Cell and Tissue Research

, Volume 270, Issue 2, pp 287–302 | Cite as

Immunocytochemical localization of pheromone-binding protein in moth antennae

  • R. A. Steinbrecht
  • M. Ozaki
  • G. Ziegelberger


Odorant-binding proteins are supposed to play an important role in stimulus transport and/or inactivation in olfactory sense organs. In an attempt to precisely localize pheromone-binding protein in the antenna of moths, post-embedding immunocytochemistry was performed using an antiserum against purified pheromone-binding protein of Antheraea polyphemus. In immunoblots of antennal homogenates, the antiserum reacted exclusively with pheromone-binding protein of A. polyphemus, and cross-reacted with homologous proteins of Bombyx mori and Autographa gamma. On sections of antennae of male A. polyphemus and B. mori, exclusively the pheromone-sensitive sensilla trichodea are labelled; in A. gamma, label is restricted to a subpopulation of morphologically similar sensilla trichodea, which indicates that not all pheromone-sensitive sensilla contain the same type of pheromone-binding protein and accounts for a higher specificity of pheromone-binding protein than hitherto assumed. Within the sensilla trichodea, the extracellular sensillum lymph of the hair lumen and of the sensillum-lymph cavities is heavily labelled. Intracellular label is mainly found in the trichogen and tormogen cells: in endoplasmic reticulum, Golgi apparatus, and a variety of dense granules. Endocytotic pits and vesicles, multivesicular bodies and lysosome-like structures are also labelled and can be observed not only in these cells, but also in the thcogen cell and in the receptor cells. Cell membranes are not labelled except the border between thecogen cell and receptor cell and the autojunction of the thecogen cell. The intracellular distribution of label indicates that pheromone-binding protein is synthesized in the tormogen and trichogen cell along typical pathways of protein secretion, whereas its turnover and decomposition does not appear to be restricted to these cells but may also occur in the thecogen and receptor cells. The immunocytochemical findings are discussed with respect to current concepts of the function of pheromone-binding protein.

Key words

Olfaction Sensillum trichodeum Odorant-binding protein Cryofixation Freeze-substitution Immunogold labelling Antheraea polyphemus, Bombyx mori, Autographa gamma (Insecta) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arn H, Tóth M, Priesner E (1986) List of sex pheromones of Lepidoptera and related attractants. OILB-SROP, ParisGoogle Scholar
  2. Batteiger B, Newhall WJ, Jones RB (1982) The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 55:297–307Google Scholar
  3. Boeckh J, Kaißling K-E, Schneider D (1960) Sensillen und Bau der Antennengeißel von Telea polyphemus (Vergleiche mit weiteren Saturniden: Antheraea, Platysamia und Philosamia). Zool Jb Anat 78:559–584Google Scholar
  4. Boeckh J, Kaissling K-E, Schneider D (1965) Insect olfactory receptors. Cold Spring Harb Symp Quant Biol 30:263–280Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Breer H, Krieger J, Raming K (1990) A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi. Insect Biochem 20:735–740Google Scholar
  7. Danscher G (1981) Localization of gold in biological tissue ... a photochemical method for light and electronmicroscopy. Histochemistry 71:81–88Google Scholar
  8. Dunkelblum E, Gothilf S (1983) Sex pheromone components of the gamma moth, Autographa gamma (L.) (Lepidoptera: Noctuidae). Z Naturforsch 38c:1011–1014Google Scholar
  9. Ernst K-D (1969) Die Feinstruktur von Riechsensillen auf der Antenne des Aaskäfers Necrophorus (Coleoptera). Z Zellforsch Mikrosk Anat 94:72–102Google Scholar
  10. Getchell TV, Margolis FL, Getchell ML (1984) Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol 23:317–345Google Scholar
  11. Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. II. Morphometric analysis. Cell Tissue Res 235:35–42Google Scholar
  12. Györgyi TK, Roby-Shemkovitz AJ, Lerner MR (1988) Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissue-specific developmentally regulated protein. Proc Natl Acad Sci USA 85:9851–9855Google Scholar
  13. Heinbockel T, Kaissling K-E (1990) Sensitivity and inhibition of antennal benzoic-acid receptor cells of female silkmoth Bombyx mori L. Verh Dtsch Zool Ges 83:411Google Scholar
  14. Henke K (1953) Über Zelldifferenzierung im Intergument der Insekten und ihre Bedingungen. J Embryol Exp Morphol 1:217–226Google Scholar
  15. Kaissling K-E (1986) Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci 9:121–145Google Scholar
  16. Kaissling K-E (1987) R.H Wright lectures on insect olfaction. Simon Fraser University, Burnaby, CanadaGoogle Scholar
  17. Kaissling K-E, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28Google Scholar
  18. Kanaujia S, Kaissling K-E (1985) Interactions of phermone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81Google Scholar
  19. Kasang G, Kaissling K-E (1972) Specificity of primary and secondary olfactory processes in Bombyx antennae. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 200–206Google Scholar
  20. Kasang G, Proff L von, Nicholls M (1988) Enzymatic conversion and degradation of sex pheromoes in antennae of the male silkworm moth Antheraea polyphemus. Z Naturforsch 43c:275–284Google Scholar
  21. Kasang G, Nicholls M, von Proff L (1989) Sex pheromone conversion and degradation in antennae of the silkworm moth Bombyx mori L. Experientia 45:81–87Google Scholar
  22. Keil TA (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 14:451–462Google Scholar
  23. Keil TA (1984a) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104:147–156Google Scholar
  24. Keil TA (1984b) Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 16:705–717Google Scholar
  25. Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151Google Scholar
  26. Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure, vol 2. Plenum, New York, pp 477–516Google Scholar
  27. Keil TA, Steinbrecht RA (1987) Diffusion barriers in silkmoth sensory epithelia: application of lanthanum tracer to olfactory sensilla of Antheraea polyphemus and Bombyx mori. Tissue Cell 19:119–134Google Scholar
  28. Keil TA, Steiner C (1991) Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. III. Development of olfactory sensilla and the properties of hairforming cells. Tissue Cell 23:821–851Google Scholar
  29. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32Google Scholar
  30. Kemler R, Schwarz H (1989) Ultrastructural localization of the cell adhesion molecule uvomorulin using site-directed antibodies. In: Laat SW de, Bluemink JG, Mummery CR (eds) Cell to cell signals in mammalian development. NATO ASI Series, vol 26 Springer, Berlin Heidelberg, pp 145–152Google Scholar
  31. Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem 17:1193–1204Google Scholar
  32. Krieger J, Raming K, Breer H (1991) Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim Biophys Acta 1088:277–284Google Scholar
  33. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209Google Scholar
  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  35. Meng LZ, Wu CH, Wicklein M, Kaissling K-E, Bestmann HJ (1989) Number and sensitivity of three types of pheromone receptor cells in Antheraea pernyi and Antheraea polyphemus. J Comp Physiol [A] 165:139–146Google Scholar
  36. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358Google Scholar
  37. Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248Google Scholar
  38. Pevsner J, Snyder SH (1990) Odorant-binding protein: odorant transport function in the vertebrate nasal epithelium. Chem Senses 15:217–222Google Scholar
  39. Pevsner J, Sklar PB, Snyder SH (1986) Odorant-binding protein: localization to nasal glands and secretions. Proc Natl Acad Sci USA 83:4942–4946Google Scholar
  40. Pevsner J, Reed RR, Feinstein PG, Snyder SH (1988) Molecular cloning of odorant-binding protein: member of a ligand carrier family. Science 241:336–339Google Scholar
  41. Plattner H (1989) Regulation of membrane fusion during exocytosis. Int Rev Cytol 119:197–286Google Scholar
  42. Priesner E (1979) Progress in the analysis of pheromone receptor systems. Ann Zool Ecol Anim 11:533–546Google Scholar
  43. Priesner E (1980) Sensory encoding of pheromone signals and related stimuli in male moths. In: Insect neurobiology and insecticide action (Neurotox 79). Society of Chemical Industry, London, pp 359–366Google Scholar
  44. Raming K, Krieger J, Breer H (1989) Molecular cloning of an insect pheromone-binding proteins, FEBS Letters 256:215–218Google Scholar
  45. Raming K, Krieger J, Breer H (1990) Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other lignad-carrying proteins. J Comp Physiol [B] 160:503–509Google Scholar
  46. Schneider D (1984) Insect olfaction—Our research endeavor. In: Dawson WW, Enoch JM (eds) Foundations of sensory science. Springer, Berlin Heidelberg New York, pp 381–418Google Scholar
  47. Schneider D, Kaißling K-E (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II Sensillen, cuticulare Bildungen und innerer Bau. Zool Jb Anat 76:223–250Google Scholar
  48. Schneider D, Lacher V, Kaissling K-E (1964) Die Reaktionsweise und das Reaktionspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae). Z Vergl Physiol 48:632–662Google Scholar
  49. Steinbrecht RA (1969) Comparative morphology of olfactory receptors. In: Pfaffman C (ed) Olfaction and taste III. Rockefeller University Press, New York, pp 3–21Google Scholar
  50. Steinbrecht RA (1970) Zur Morphometrie der Antenne des Seidenspinners, Bombyx mori L: Zahl und Verteilung der Riechsensillen (Insecta, Lepidoptera). Z Morph Tiere 68:93–126Google Scholar
  51. Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera): Rezeptorfortsätze und reizleitender Apparat. Z Zellforsch Mikrosk Anat 139:533–565Google Scholar
  52. Steinbrecht RA (1980) Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell 12:73–100Google Scholar
  53. Steinbrecht RA (1984) Chemo-, hygro-, and thermoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 523–553Google Scholar
  54. Steinbrecht RA (1985) Recrystallization and ice-crystal growth in a biological specimen, as shown by a simple freeze substitution method. J Microsc 140:41–46Google Scholar
  55. Steinbrecht RA (1987) Functional morphology of pheromone-sensitive sensilla. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 353–384Google Scholar
  56. Steinbrecht RA (1992a) Experimental morphology of insect olfaction — tracer studies, X-ray microanalysis, autoradiography, and immunocytochemistry with silkmoth antennae. J Electron Microsc Res Techn (in press)Google Scholar
  57. Steinbrecht RA (1992b) Stimulus transport and inactivation in insect olfactory sensilla-functional morphology, tracer experiments, and immunocytochemistry. In: Singh RN (ed) Neurobiology: principles of design and function. Wiley Eastern, New Delhi, pp 417–436Google Scholar
  58. Steinbrecht RA (1992c) Freeze-substitution for morphological and immunocytochemical studies in insects. J Electron Microsc Res Techn, in pressGoogle Scholar
  59. Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34Google Scholar
  60. Steinbrecht RA, Müller B (1971) On the stimulus conducting structures in insect olfactory receptors. Z Zellforsch Mikrosk Anat 117:570–575Google Scholar
  61. Steinbrecht RA, Keil TA, Ozaki M, Maida R, Ziegelberger G (1991) Immunocytochemistry of pheromone binding protein. In: Elsner N, Penzlin H (eds) Synapse-Transmission-Modulation, Proceedings of the 19th Göttingen neurobiology Conference. Thieme, Stuttgart New York, p 172Google Scholar
  62. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 735–763Google Scholar
  63. Van den Berg MJ, Ziegelberger G (1991) On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J Insect Physiol 37:79–85Google Scholar
  64. Vogt RG (1987) The molecular basis of pheromone reception: its influence on behavior. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 385–431Google Scholar
  65. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163Google Scholar
  66. Vogt RG, Riddiford LM (1986) Pheromone reception: a kinetic equilibrium. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon, Oxford, pp 201–208Google Scholar
  67. Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA 82:8827–8831Google Scholar
  68. Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neuroscience 9:3332–3346Google Scholar
  69. Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84Google Scholar
  70. Williams JLD (1988) Nodes on the large pheromone-sensitive dendrites of olfactory hairs of the male silkmoth, Antheraea polyphemus (Cramer) (Lepidoptera: Saturniidae). Int J Insect Morphol Embryol 17:145–151Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • R. A. Steinbrecht
    • 1
  • M. Ozaki
    • 2
  • G. Ziegelberger
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesenFederal Republic of Germany
  2. 2.Department of BiologyOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations