Chromosoma

, Volume 59, Issue 4, pp 323–340 | Cite as

Evidence for dosage compensation in parthenogenetic Hymenoptera

  • Ellen M. Rasch
  • Joseph D. Cassidy
  • Robert C. King
Article

Abstract

Amount of DNA-Feulgen staining in individual somatic nuclei and mature sperm of the parthenogenetic wasps, Habrobracon juglandis, H. serinopae, and Mormoniella vitripennis, were determined with a scanning microdensitometer. The haploid genome for both species of Habrobracon was estimated to be 0.15–0.16×10−12 g DNA, corresponding to a molecular weight of roughly 10×1010 daltons. The haploid genome of M. vitripennis is approximately twice this value, 0.33–0.34×10−12 g, or about 20×1010 daltons. Measurements made on dividing nuclei from syncytial preblastoderm embryos of H. juglandis and M. vitripennis showed that the chromosomes of impaternate males were present in the haploid number and contained the C amount of DNA; whereas nuclei from female preblastoderm embryos contained the diploid number of chromosomes and the 2C amount of DNA. However, hemocyte and brain cell nuclei from either male or female adult wasps contained 2C and 4C amounts of DNA. Both sexes also showed equivalent levels of polyploidy (8C, 16C, or 32C) in Malpighian tubule nuclei. Therefore, in these parthenogenetic species, a mechanism must exist that compensates during later development for the initial two-fold difference in the chromatin content of somatic nuclei in haploid male and diploid female embryos. Hemocytes from impaternate Mormoniella diploid males and triploid females contain the 2C and 3C amounts of DNA, respectively. Therefore dosage compensation involves an additional cycle of DNA replication only in haploid cells, and it insures that a certain minimum quantity of DNA is received by each somatic cell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, S., Bender, M.A., Conger, A.D., Wolff, S.: Uniformity of radiation-induced mutation rates among different species. Nature (Lond.) 245, 460–461 (1973)Google Scholar
  2. Britten, R.J., Davidson, E.H.: Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46, 111–138 (1971)Google Scholar
  3. Cassidy, J.D.: The parasitoid wasps, Habrobracon and Mormoniella. In: Invertebrates of genetic interest, Handbook of genetics (R.C. King, ed.), vol. 3, pp. 173–203. New York: Plenum Publishing Corporation 1975Google Scholar
  4. Clark, A.M., Bertrand, H.A., Smith, R.E.: Life span differences between haploid and diploid males of Habrobracon serinopae after exposure of adults to X-rays. Amer. Naturalist 97, 203–208 (1963)Google Scholar
  5. Clark, A.M., Cole, K.W.: The effects of ionizing radiation on the longevity of ploidy types in the wasp Mormoniella vitripennis. Exp. Gerontol. 8, 89–95 (1967)Google Scholar
  6. Clark, A.M., Mitchell, C.J.: Effects of X-rays upon haploid and diploid embryos of Habrobracon. Biol. Bull. 103, 170–177 (1952)Google Scholar
  7. Flierdt, K. van de: No multistrandedness in mitotic chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 50, 431–434 (1975)Google Scholar
  8. Foster, G.V.: Brain karyotypes of the parasitic wasp Mormoniella vitripermis (Walker). M.A. thesis in the Department of Biological Sciences, University of Delaware, 95 pp. (1967)Google Scholar
  9. Gay, H., Das, C.C., Forward, K., Kaufmann, B.P.: DNA content of mitotically-active condensed chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 32, 213–223 (1970)Google Scholar
  10. Grosch, D.S.: Cytological aspects of growth in impaternate (male) larvae of Habrobracon. J. Morph. 86, 153–176 (1950)Google Scholar
  11. Hauschteck-Jungen, E.: Quantitativ DNS-Bestimmungen von Ameisenhirnzellen. II. Einfluß der Umwelt auf die Feulgen-Extinktionswerte. Chromosoma (Berl.) 43, 79–96 (1970)Google Scholar
  12. Johnson, D.C., Ray, D.T.: Chromosome identification in Mormoniella. J. Hered. 63, 217–218 (1972)Google Scholar
  13. Merriam, R.W., Ris, H.: Size and DNA content of nuclei in various tissues of male, female, and worker honeybees. Chromosoma (Berl.) 6, 522–538 (1954)Google Scholar
  14. Mittwoch, U., Kalmus, H., Webster, W.S.: Deoxyribonucleic acid values in dividing and nondividing cells of male and female larvae of the honey bee. Nature (Lond.) 210, 264–266 (1966)Google Scholar
  15. O'Brien, R.: Deoxyribose nucleic acid in a haploid-diploid species (Steatococcus tuberculatus Morrison). Chromosoma (Berl.) 8, 229–259 (1956)Google Scholar
  16. Pennypacker, M.I.: The chromosomes of the parasitic wasp Mormoniella vitripennis (Walker); Part I. In spermatogenesis of haploid and diploid males. Archiv. Biol. 69, 483–493 (1958)Google Scholar
  17. Rasch, E.M.: DNA cytophotometry of salivary gland nuclei and other tissue systems in dipteran larvae. In: Introduction to quantitative cytochemistry, vol. 2 (G.L. Wied and G.F. Bahr, eds.), pp. 357–397 (1970)Google Scholar
  18. Rasch, E.M.: The DNA content of sperm and hemocyte nuclei of the silkworm, Bombyx mori L. Chromosoma (Berl.) 45 1–26 (1974)Google Scholar
  19. Rasch, E.M., Barr, H.J., Rasch, R.W.: The DNA content of sperm of Drosophila melanogaster. Chromosoma (Berl.) 33, 1–18 (1971)Google Scholar
  20. Rasch, E.M., Cassidy, J.D., King, R.C.: Estimates of genome size in haploid-diploid species of parasitoid wasps. J. Histochem. Cytochem. 24, 317 (1975)Google Scholar
  21. Risler, H.: Die somalische Polyploidie in der Entwicklung der Honigbiene (Apis mellifica L.) und die Wiederherstellung der Diploidie bei den Drohnen. Z. Zellforsch. 41, 1–78 (1954)Google Scholar
  22. Speicher, B.R.: Are Hymenoptera tetraploid? Nature (Lond.) 138, 78 (1936)Google Scholar
  23. Swift, H.: The organization of genetic material in eukaryotes: Progress and prospects. Cold Spr. Harb. Symp. quant. Biol. 37, 963–979 (1973)Google Scholar
  24. Whiting, A.R.: Genetics of Habrobracon. Advanc. Genet. 10, 295–348 (1961)Google Scholar
  25. Whiting, A.R.: Biology of the parasitic wasp Mormoniella vitripennis (=Nasonia brevicornis) (Walker). Quart. Rev. Biol. 42, 333–406 (1967)Google Scholar
  26. Whiting, P.W.: Polyploidy in Mormoniella. Genetics 45, 949–970 (1960)Google Scholar
  27. Whiting, P.W.: The chromosomes of Mormoniella. J. Heredity 59, 19–22 (1968)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Ellen M. Rasch
    • 1
  • Joseph D. Cassidy
    • 2
  • Robert C. King
    • 2
  1. 1.Department of BiologyMarquette UniversityMilwaukeeUSA
  2. 2.Department of Biological Sciences, O.T. Hogan BuildingNorthwestern UniversityEvanstonUSA

Personalised recommendations