, Volume 59, Issue 4, pp 283–299 | Cite as

An investigation of some problems concerning nucleolus organizers in salamanders

  • Herbert C. Macgregor
  • Marcela Vlad
  • Lesley Barnett


Observed differences in the sizes of lampbrush nucleolus organizers in Plethodon cinereus have been shown by in situ hybridization to reflect true molecular differences in the numbers of ribosomal cistrons located at these organizers. Likewise, from in situ hybridization experiments on lampbrush and spermatocyte chromosomes it has been shown that animals may be, and indeed usually are, heterozygous with respect to the numbers of ribosomal cistrons on each half of the nucleolus bivalent. Filter hybridizations carried out on 33 males from a New Jersey population and 20 males from a Connecticut population have shown a 7.5-fold range in the numbers of ribosomal cistrons per diploid cell in the New Jersey population, and a 2.5-fold range in the Connecticut population. In view of the general heterozygosity of nucleolus organizers in these animals, the actual range in nucleolus organizer sizes in the New Jersey population is estimated to be at least 15-fold.


Developmental Biology Hybridization Experiment Actual Range Diploid Cell Nucleolus Organizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnstiel, M.L., Spiers, J., Purdom, I., Jones, K., Loening, U.E.: Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis. Nature (Lond.) 219, 454–463 (1968)Google Scholar
  2. Brown, D.D., Weber, C.S.: Gene linkage by RNA-DNA hybridization. Unique DNA sequences homologous to 4S RNA, 5S RNA and ribosomal RNA. J. molec. Biol. 34, 661–680 (1968a)Google Scholar
  3. Brown, D.D., Weber, C.S.: Gene linkage by RNA-DNA hybridization. II. Arrangement of redundant gene sequences for 28S and 18S ribosomal DNA. J. molec. Biol. 34, 681–697 (1968b)Google Scholar
  4. Callan, H.G.: Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J. Cell Sci. 1, 85–108 (1966)Google Scholar
  5. Callan, H.G., Lloyd, L.: Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Phil. Trans. B 243, 135–219 (1960)Google Scholar
  6. Dawid, I.B., Brown, D.D., Reeder, R.H.: Composition and structure of chromosomal and amplified ribosomal DNAs of Xenopus laevis. J. molec. Biol. 51, 341–360 (1970)Google Scholar
  7. Evans, H.J., Buckland, R.A., Pardue, M.L.: Location of the genes coding for 18S and 28S ribosomal RNA in the human genome. Chromosoma (Berl.) 48, 405–426 (1974)Google Scholar
  8. Frankhauser, G., Humphrey, R.R.: The origin of spontaneous heteroploids in the progeny of diploid, triploid and tetraploid axolotl females. J. exp. Zool. 142, 379–417 (1959)Google Scholar
  9. Ferguson-Smith, K., Handmaker, S.D.: The association of satellite chromosomes with specific chromosomal regions in cultured human somatic cells. Genetics 27, 143–156 (1963)Google Scholar
  10. Funaki, K., Matsui, S., Sasaki, M.: Location of nucleolar organizers in animal and plant chromosomes by means of an improved N-banding technique. Chromosoma (Berl.) 49, 357–370 (1975)Google Scholar
  11. Gall, J.G.: Lampbrush chromosomes from oocyte nuclei of the newt. J. Morph. 94, 283–351 (1954)Google Scholar
  12. Gall, J.G., Pardue, M.L.: Nucleic acid hybridization in cytological preparations. In: Methods in enzymology, vol. XXI D (L. Grossman and K. Moldave, eds.). New York: Academic Press 1971Google Scholar
  13. Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilised on a membrane. J. molec. Biol. 12, 829–842 (1965)Google Scholar
  14. Goodpasture, C., Bloom, S.E.: Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma (Berl.) 53, 37–50 (1975)Google Scholar
  15. Hennen, S., Mizuno, S., Macgregor, H.C.: In situ hybridization of ribosomal DNA labelled with 125Iodine to metaphase and lampbrush chromosomes from newts. Chromosoma (Berl.) 50, 349–369 (1975)Google Scholar
  16. Humphrey, R.R.: A chromosomal deletion in the Mexican axolotl (Siredon mexicanum) involving the nucleolar organizer and the gene for dark colour. Amer. Zoologist 1, 361 (Abstract) (1961)Google Scholar
  17. Hutchinson, N., Pardue, M.L.: The mitotic chromosomes of Notophthalmus (=Triturus) viridescens: localization of C banding regions and DNA sequences complementary to 18S, 28S and 5S ribosomal RNA. Chromosoma (Berl.) 53, 51–69 (1975)Google Scholar
  18. Kezer, J., Macgregor, H.C.: A fresh look at meiosis and centromeric heterochromatin in the red-backed salamander Plethodon cinereus cinereus (Green). Chromosoma (Berl.) 33, 146–166 (1971)Google Scholar
  19. Kezer, J., Macgregor, H.C.: The nucleolar organizer of Plethodon cinereus cinereus (Green). II. The lampbrush nucleolar organizer. Chromosoma (Berl.) 42, 427–444 (1973)Google Scholar
  20. Macgregor, H.C.: The role of lampbrush chromosomes in the formation of nucleoli in amphibian oocytes. Quart. J. micr. Sci. 106, 215–228 (1965)Google Scholar
  21. Macgregor, H.C., Kezer, J.: The chromosomal localization of a heavy satellite DNA in the testis of Plethodon c. cinereus. Chromosoma (Berl.) 33, 167–182 (1971)Google Scholar
  22. Macgregor, H.C., Mizuno, S.: In situ hybridization of “nick-translated” 3H-ribosomal DNA to chromosomes from salamanders. Chromosoma (Berl.) 54, 15–25 (1976)Google Scholar
  23. Macgregor, H.C., Mizuno, S., Vlad, M.: Chromosomes and DNA sequences in salamanders. Chromosomes today 5, 331–339 (1976)Google Scholar
  24. Macgregor, H.C., Walker, M.H.: The arrangement of chromosomes in nuclei of sperm from plethodontid salamanders. Chromosoma (Berl.) 40, 243–262 (1973)Google Scholar
  25. Mancino, G., Nardi, I., Ragghianti, M.: Lampbrush chromosomes from semi albino crested newts, Triturus cristatus carnifex (Laurenti). Experientia (Basel) 28, 856–860 (1972)Google Scholar
  26. McClintock, B.: The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. 21, 294–328 (1934)Google Scholar
  27. Miller, L., Brown, D.D.: Variation in the activity of nucleolar organizers and their ribosomal gene content. Chromosoma (Berl.) 28, 430–444 (1969)Google Scholar
  28. Miller, L., Knowland, J.: Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J. molec. Biol. 53, 329–338 (1970)Google Scholar
  29. Sinclair, J.H., Carroll, C.R., Humphrey, R.R.: Variation in rDNA redundancy level and nucleolar organizer length of the Mexican axolotl. J. Cell Sci. 15, 239–257 (1974)Google Scholar
  30. Spurr, A.R.: A low-viscosity expoxy-resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)Google Scholar
  31. Vlad, M., Macgregor, H.C.: Chromomere number and its genetic significance in lampbrush chromosomes. Chromosoma (Berl.) 50, 327–347 (1975)Google Scholar
  32. Wensink, P.C., Brown, D.D.: Denaturation map of the ribosomal DNA of Xenopus laevis. J. molec. Biol. 60, 235–247 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Herbert C. Macgregor
    • 1
  • Marcela Vlad
    • 2
    • 1
  • Lesley Barnett
    • 1
  1. 1.Department of ZoologyUniversity of LeicesterLeicesterEngland
  2. 2.Department of Biological SciencesUniversity of WarwickCoventryEngland

Personalised recommendations