, Volume 107, Issue 2, pp 274–282 | Cite as

Body size evolution of oxyurid (Nematoda) parasites: the role of hosts

  • Serge Morand
  • Pierre Legendre
  • Scott Lyell Gardner
  • Jean-Pierre Hugot
Community Ecology


Studying the diversification of body size in a taxon of parasites allows comparison of patterns of variation observed in the parasites with patterns found in free-living organisms. The distributions of body size of oxyurid nematodes (obligate parasites of vertebrates and invertebrates) are lognormally right-skewed, except for male oxyurids in invertebrates which show left-skewed distributions. In these parasitic forms, speciose genera do not have the smallest body sizes. Parasite body size is positively correlated with host body size, the largest hosts possessing the largest parasites. This trend is shown to occur within one monophyletic group of oxyurids, those of Old World primates. Comparative methods are used to take account of the effects of phylogeny. The use of multiple linear regression on distance matrices allows measurements of the contribution of phylogeny to the evolution of body size of parasites. Evolution of body size in female pinworms of Old World primates appears to be dependent only on the body size of their hosts. The tendency of parasite body size to increase with host body size is discussed in the light of the evolution of life-history traits.

Key words

Body size Host-parasite relationship Lognormally skewed distribution Nematodes Independent comparisons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson ML (1989) Evolutionary biology of the Oxyurida (Nematoda): biofacies of a haplodiploid taxon. Adv Parasitol 28: 175–228Google Scholar
  2. Adamson ML (1990) Haplodiploidy in the Oxyurida: decoupling the evolutionary processes of adaptation and speciation. Ann Parasitol Hum Comp 65 Suppl 1: 31–35Google Scholar
  3. Brooks DR, Glen DR (1982) Pinworms and primates: a case study in coevolution. Proc Helminthol Soc Washington 49: 76–85Google Scholar
  4. Brooks DR, McLennan DA (1993) Parascript (Smithsonian series in comparative evolutionary biology). Smithsonian Institution, WashingtonGoogle Scholar
  5. Burt A (1989) Comparative methods using phylogenetically independent contrasts. Oxford Surv Evol Biol 6: 33–53Google Scholar
  6. Charnov EL (1993) Life history invariants. Some explorations of symmetry in evolutionary ecology. Oxford University Press, OxfordGoogle Scholar
  7. Dawling MG (1966) Catalogue of American amphibians and reptiles. American Society of Icthyologists and Herpetologists, New YorkGoogle Scholar
  8. Dial KP, Marzluff JM (1988) Are the smallest organisms the most diverse? Ecology 69: 1620–1624Google Scholar
  9. Esch GW, Hazen TC, Aho JM (1977) Parasitism and r- and K-selection. In: Esch GW (ed) Regulation of parasite populations. Academic Press, New York, pp 9–62Google Scholar
  10. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15Google Scholar
  11. Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleontol 62: 319–329Google Scholar
  12. Harvey PH (1982) On rethinking allometry. J Theor Biol 95: 37–41Google Scholar
  13. Harvey PH, Keymer AE (1991) Comparing life histories using phylogenies. Philos Trans R Soc London B 332: 31–39Google Scholar
  14. Harvey PH, Pagel M (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  15. Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, OxfordGoogle Scholar
  16. Hugot JP (198) Les nématodes Syphaciinae parasites de rongeurs et de lagomorphes: taxonomie, zoogéographie, évolution. Mém Mus Natl Hist Nat Paris Sér A Zool 141: 1–153Google Scholar
  17. Hugot J-P (1990) The Syphaciinae (Oxyuridae, Nematoda) parasitic in rodents and lagomorpha. Numerical taxonomy. Cladistic analysis of evolution. Ann Parasitol Hum Comp 65 Suppl 1 27–29Google Scholar
  18. Hutchinson GE, MacArthur RH (1959) A theoretical ecological model of size distributions among species. Am Nat 93: 117–123Google Scholar
  19. Jennings JB, Calow PC (1975) The relationship between high fecundity and the evolution of entoparasitism. Oecologia 21: 109–115Google Scholar
  20. Jolicoeur P (1973) Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment. J Am Stat Assoc 68: 866–871Google Scholar
  21. Jolicoeur P, Mosimann JE (1968) Intervalles de confiance pour la pente de l'axe majeur d'une distribution normale bidimensionnelle. Biom-Praxim 9: 121–140Google Scholar
  22. Keymer AE, Gregory RD, Harbey PH, Read AF, Skorping A (1991) Parasite-host ecology: case studies in population dynamics, life-history evolution and community structure. Acta Oecol 12, 105–118Google Scholar
  23. Kirchner TB, Anderson RV, Ingham RE (1980) Natural selection and the distribution of nematode sizes. Ecology 61: 232–237Google Scholar
  24. Kooijman SALM (1993) Dynamic energy budgets in biological systems. Cambridge University Press, CambridgeGoogle Scholar
  25. Kozlowski J (1992) Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends Ecol Evol 7: 15–19Google Scholar
  26. Legendre L, Legendre P (1996) Numerical ecology, 2nd edn. Elsevier, Amsterdam (in press)Google Scholar
  27. Legendre P, Lapointe F-J, Casgrain P (1995) Modeling brain evolution from behavior: a permutational regression approach. Evolution 18: 1487–1499Google Scholar
  28. Leibersperger E (1960) Die Oxyuroidea der europäischen Arthropoden. Parasitol Schriftenr 11: 1–150Google Scholar
  29. Lewin R (1983) Santa Rosalia was a goat. Science 221: 636–639Google Scholar
  30. Maurer BA, Brown JH, Rusler RD (1992) The micro and macro in body size evolution. Evolution 46: 939–953Google Scholar
  31. May RM (1978) The dynamics and diversity of insect faunas. In: Mond LA, Waloff N (eds) Diversity of insect faunas. Blackwell, New York, pp 188–204Google Scholar
  32. Marand S (1996a): Biodiversity of parasites in relation with their life cycle. In: Hochberg M, Clobert J, Barbault R (eds) The genesis and maintenance of biological diversity. Oxford University Press, Oxford, pp 243–260Google Scholar
  33. Morand S (1996b) Life-history traits in parasitic nematodes: a comparative approach for the search of invariants. Funct Ecol (in press)Google Scholar
  34. Naganuma KH, Roughgarden JD (1990) Optimal body size in lesser antillean Anolis lizards—a mechanistic approach. Ecol Monogr 60: 239–256Google Scholar
  35. Pagel MD, Harvey PH (1988) The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. Am Nat 132: 344–359Google Scholar
  36. Pasteur G, Bons J (1959) Les batraciens du Maroc. Trav Inst Sci Chérifien Sér Zool 17: 1–20Google Scholar
  37. Pasteur G, Bons J (1960) Catalogue des reptiles actuels du Maroc. Trav Inst Sci Chérifien Sér Zool 18: 1–25Google Scholar
  38. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag Ser 6 2: 559–572Google Scholar
  39. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeGoogle Scholar
  40. Petter AJ, Quentin J-C (1976) Keys to the genera of the Oxyuridea, no 4. In: Anderson RC, Chabaud AG, Wilmott S (eds) CIH keys to the nematode parasites of vertebrates. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, pp 1–30Google Scholar
  41. Poinar GO (1977) CIH key to the groups and genera of nematode parasites of invertebrates. Commonwealth Agricultural Bureaux, Farnham Royal, SloughGoogle Scholar
  42. Poulin R (1995a) Evolutionary influences on body size in free-living and parasitic isopods. Biol J Linn Soc 54: 231–244Google Scholar
  43. Poulin R (1995b) Evolution of parasite life history traints: myths and reality. Parasitol Today 11: 342–345Google Scholar
  44. Purvis A, Rambaut A (1994) Comparative analysis by independent contrasts (CAIC). A statistical package for the Apple Macintosh version 2.0, user's guide. University of Oxford, OxfordGoogle Scholar
  45. Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC). Comput Appl Biosci 11: 247–251Google Scholar
  46. Sibly RM, Calow P (1986) Physiological ecology of animals. An evolutionary approach. Blackwell, OxfordGoogle Scholar
  47. Skrijabin KI, Shikhobalova NP, Lagodovskaya EA (1960) Oxyurata of animals and man (Izd Akad Nauk SSSR Moskva. translated 1974). Israel Program for Scientific Translations, JerusalemGoogle Scholar
  48. Skorping A, Read AF, Keymer AE (1991) Life history covariation in intestinal nematodes of mammals. Oikos 60: 365–372Google Scholar
  49. Stanley SM (1973) An explanation for Cope's rule. Evolution 27: 1–26Google Scholar
  50. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New YorkGoogle Scholar
  51. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  52. Walker EP (1968) Mammals of the world, 2nd edn. John Hopkins Press, BaltimoreGoogle Scholar
  53. Wharton DA (1986) A functional biology of Nematodes. Croom Helm, LondonGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Serge Morand
    • 1
  • Pierre Legendre
    • 2
  • Scott Lyell Gardner
    • 3
  • Jean-Pierre Hugot
    • 4
  1. 1.Centre de Biologie et d'Écologie tropicale et méditerranéenne, Laboratoire de Biologie Animale (Unité de Recherche Associée au CNRS 698)Université de PerpignanPerpignanFrance
  2. 2.Department de sciences biologiquesUniversité de MontréalMontréalCanada
  3. 3.Laboratory of Parasitology, University of Nebraska State MuseumUniversity of LincolnUSA
  4. 4.Laboratoire de Biologie parasitaire (Unité de Recherche Associée au CNRS 114b0)Muséum National d'Histoire NaturelleParis Cedex 05France

Personalised recommendations