Archive for History of Exact Sciences

, Volume 20, Issue 3–4, pp 313–356 | Cite as

Simple groups of finite order in the nineteenth century

  • Richard Silvestri
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Artin, E., “The orders of the classical simple groups,” Comm. Pure Appl. Math. 8 (1955), 455–472.Google Scholar
  2. Bell, E. T., “Fifty years of algebra in America 1888–1938,” Semicentennial Addresses of the American Mathematical Society (1938), 1–34.Google Scholar
  3. Brahana, H. R., “George Abram Miller 1863–1951,” Bull. Amer. Math. Soc. 57 (1951), 377–382.Google Scholar
  4. Burkhardt, H., “Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen II,” Math. Ann. 38 (1891), 161–224.Google Scholar
  5. Burkhardt, H., “Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen III,” Math. Ann. 41 (1893), 313–343.Google Scholar
  6. Burnside, W., “Notes on the theory of groups of finite order,” Proc. London Math. Soc. 25 (1893), 9–18.Google Scholar
  7. Burnside, W., “On a class of groups defined by congruences,” Proc. London Math. Soc. 25 (1894), 113–139.Google Scholar
  8. Burnside, W., “On a class of groups defined by congruences,” (second paper), Proc. London Math. Soc. 26 (1895), 58–106.Google Scholar
  9. Burnside, W., “Notes on the theory of groups of finite order,” Proc. London Math. Soc. 26 (1895), 191–214, 325–338.Google Scholar
  10. Burnside, W., Theory of Groups of Finite Order, University Press, Cambridge, 1897.Google Scholar
  11. Burnside, W., Theory of Groups of Finite Order, second edition, University Press, Cambridge, 1911.Google Scholar
  12. Cauchy, A., Œuvres Complètes, 26 volumes, Gauthier-Villars, Paris, 1882–1938.Google Scholar
  13. Cayley, A., Collected Mathematical Papers, 14 volumes, University Press, Cambridge, 1889–1898.Google Scholar
  14. Cole, F. N., “A contribution to the theory of the general equation of the sixth degree,” Amer. J. Math. 8 (1886), 265–286.Google Scholar
  15. Cole, F. N., “Klein's Ikosaeder,” Amer. J. Math. 9 (1887), 45–61.Google Scholar
  16. Cole, F. N., “Simple groups from order 201 to order 500,” Amer. J. Math. 14 (1892), 378–388.Google Scholar
  17. Cole, F. N., “Simple groups as far as order 660,” Amer. J. Math. 15 (1893), 305–315.Google Scholar
  18. Cole, F. N., “List of the transitive substitution groups of ten and eleven letters,” Quart. J. Math. 27 (1894), 39–50.Google Scholar
  19. Cole, F. N., “On simple groups of low order,” Bull. Amer. Math. Soc. 30 (1924), 489–492.Google Scholar
  20. Davis, C., A Bibliographical Survey of Simple Groups of Finite Order, 1900–1965, New York University, New York, 1969.Google Scholar
  21. Dickson, L. E., Linear Groups with an Exposition of the Galois Field Theory, Dover, New York, 1958.Google Scholar
  22. Dieudonné, J., “On the automorphisms of the classical groups” with a supplement by Loo-Keng Hua, Mem. Amer. Math. Soc. No. 2 (1951), vi+122 pp.Google Scholar
  23. Dieudonné, J., Sur les groupes classiques, Actualités Sci. Ind. No. 1040, Hermann, Paris 1948.Google Scholar
  24. Dyck, W., “Gruppentheoretische Studien II. Über die Zusammensetzung einer Gruppe discreter Operationen, über ihre Primitivität und Transitivität,” Math. Ann. 22 (1883), 70–108.Google Scholar
  25. Fricke, R., & F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, volume I, Johnson Reprint, New York, 1965.Google Scholar
  26. Frobenius, G., Gesammelte Abhandlungen, 3 volumes, Springer, Berlin, New York, 1968.Google Scholar
  27. Gallian, J., “The Search for Finite Simple Groups,” Math. Magazine, 49 (1976), 164–179.Google Scholar
  28. Galois, E., “Œuvres,” Journ. Math. Pure. Appl. 11 (1846), 381–444.Google Scholar
  29. Galois, E., Œuvres Mathématiques, Gauthier-Villars, Paris, 1897.Google Scholar
  30. Galois, E., Ecrits et Mémoires Mathématiques (ed. by R. Bourgne & J.P. Azra), Gauthier-Villars, Paris, 1962.Google Scholar
  31. Gierster, J., “Die Untergruppen der Galois'schen Gruppe der Modulargleichungen für den Fall eines primzahligen Transformationsgrades,” Math. Ann. 18 (1881), 319–365.Google Scholar
  32. Gordan, P., “Über Gleichungen siebenten Grades mit einer Gruppe von 168 Substitutionen,” Math. Ann. 20 (1882), 515–520.Google Scholar
  33. Gordan, P., “Über Gleichungen siebenten Grades mit einer Gruppe von 168 Substitutionen II,” Math. Ann. 25 (1885), 459–521.Google Scholar
  34. Hermite, C., “Considérations sur la résolution algébrique de l'équation du 5e degré,” Nouvelles Annales de Mathematiques 1 (1842), 329–336.Google Scholar
  35. Hölder, O., “Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen,” Math. Ann. 34 (1889), 26–56.Google Scholar
  36. Hölder, O., “Die einfachen Gruppen im ersten und zweiten Hundert der Ordnungszahlen,” Math. Ann. 40 (1892), 55–88.Google Scholar
  37. Jordan, C., Œuvres, 4 volumes, Gauthier-Villars, Paris, 1961–1964.Google Scholar
  38. Jordan, C., Traité des Substitutions et des Equations Algébriques, Gauthier-Villars, Paris, 1870.Google Scholar
  39. Kiernan, B. M., “The development of Galois theory from Lagrange to Artin,” Arch. History Exact Sci. 8 (1971), 40–154.Google Scholar
  40. Kirkman, T. P., “The complete theory of groups,” Proc. Lit. Phil. Soc. Manchester 3 (1864), 133–152.Google Scholar
  41. Kirkman, T. P., “Theory of groups, corrigenda and addenda,” Proc. Lit. Phil. Soc. Manchester 4 (1865), 171–172.Google Scholar
  42. Klein, F., Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, trans. by G. G. Morrice, Kegan Paul, Trench, Teubner & Co., London, 1888.Google Scholar
  43. Klein, F., Gesammelte Mathematische Abhandlungen, 3 volumes, Reprint, Springer-Verlag, Berlin, New York, 1973.Google Scholar
  44. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972.Google Scholar
  45. Mathieu, E., “Mémoire sur le nombre de valeurs que peut acquerir une fonction,” C.R. Acad. Sci. Paris 48 (1859), 840–841.Google Scholar
  46. Mathieu, E., “Mémoire sur le nombre de valeurs que peut acquérir une fonction quand on y permute ses variables de toutes les manières possibles,” Jour. Math. Pures Appl. (2) 5 (1860), 9–42.Google Scholar
  47. Mathieu, E., “Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables,” Jour. Math. Pures Appl. (2) 6 (1861), 241–323.Google Scholar
  48. Mathieu, E., “Sur la fonction cinq fois transitive des 24 quantités,” Journ. Math. Pures Appl. (2) 18 (1873), 25–46.Google Scholar
  49. Miller, G. A., Collected Works, 5 volumes, Univ. of Illinois Press, Urbana, 1935–1959.Google Scholar
  50. Moore, E. H., “A doubly infinite system of simple groups,” Chicago Math. Congress Papers (1893), 208–242.Google Scholar
  51. Netto, E., Theory of Substitutions and its Applications to Algebra, trans. by F. N. Cole, George Wahr, Ann Arbor, 1892.Google Scholar
  52. Rotman, J., The Theory of Groups: An Introduction, Allyn & Bacon, Boston, 1965.Google Scholar
  53. Ruffini, P., “Lettera di Pietro Abbati Modenese al socio,” Memorie della Società Italiana delle Scienze 10 (1803), 385–409.Google Scholar
  54. Schläfli, L., “An attempt to determine the 27 lines upon a surface of the third order,” Quart. J. Pure Appl. Math. 2 (1858), 110–120.Google Scholar
  55. Schottenfels, I., “Two non-isomorphic simple groups of the same order 20,160,” Annals of Math. (2) 1 (1900), 147–152.Google Scholar
  56. Serret, J., “Sur les fonctions de quatre, cinq et six lettres,” Jour. Math. Pures Appl. (1) 15 (1850), 45–70.Google Scholar
  57. Serret, J., Cours d'algèbre supérieure, third ed., 2 volumes, Gauthier-Villars, Paris, 1866.Google Scholar
  58. Siceloff, L. P., “Simple groups from order 2001 to order 3640,” Bull. Amer. Math. Soc. (2) 18 (1911), 161–162.Google Scholar
  59. Smith, D. E., A Source Book in Mathematics, McGraw-Hill, New York, 1929.Google Scholar
  60. Steiner, J., “Über die Flächen dritten Grades,” J. Reine Angew. Math. 53 (1856), 133–141.Google Scholar
  61. Sylow, L., “Théorèmes sur les groupes des substitutions,” Math. Ann. 5 (1872), 584–594.Google Scholar
  62. Weber, H., Lehrbuch der Algebra, 2 volumes, F. Vieweg & Sohn, Braunschweig, 1895–1896.Google Scholar
  63. Weyl, H., The Classical Groups, second ed., University Press, Princeton, 1946.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Richard Silvestri
    • 1
  1. 1.Department of MathematicsKeene State College

Personalised recommendations