Differentials, higher-order differentials and the derivative in the Leibnizian calculus
Article
- 536 Downloads
- 104 Citations
Keywords
Leibnizian Calculus
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Bibliography
- Apostol, T. M. 1969. Selected papers on the calculus (ed. T. M. Apostol and others). (Math. Assoc. of America) 1969.Google Scholar
- Bernoulli, Jakob I 1690. “Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales altitudines emetiatur: et alterius cujusdam problematis propositio.” Acta Erud. May 1690, pp. 217–219. Opera, pp. 421–426.Google Scholar
- Bernoulli, Jakob I 1693. “Curvae diacausticae, earum relatio ad evolutas, aliaque nova his affinia. Item: natura osculorum uberius explicata. Celeritates navium definitae. Regulae pro resistentiis, quas figurae in fluido motae patiuntur etc.” Acta Erud. June 1693, pp. 244–256. Opera, pp. 549–573.Google Scholar
- Bernoulli, Jakob I 1694. “Curvatura laminae elasticae. Ejus identitas cum curvatura Lintei a pondere inclusi fluidi expansi. Radii circulorum osculantium in terminis simplicissimis exhibiti, una cum novis quibusdam theorematis huc pertinentibus.” Acta Erud., June 1694, pp. 262–276. Opera, pp. 576–600.Google Scholar
- Bernoulli, Jakob I Opera. Opera (2 vols.), Geneva, 1744.Google Scholar
- Bernoulli, Johann I 1718. “Remarque sur ce qu'on a donné jusqu'ici de solutions des problemes sur les isoperimetres.” Mémoires de l'Académie Royale des Sciences de Paris, (1718), pp. 100–138. Opera II, pp. 235–269.Google Scholar
- Bernoulli, Johann I Integral Calculus. Lectiones mathematicae de methodo integralium, aliisque; conscriptae in usum Ill. Marchionis Hopitalii, cum auctor Parisiis ageret annis 1691 et 1692, in Opera III, pp. 385–558.Google Scholar
- Bernoulli, Johann I Opera. Opera omnia, tam antea sparsim edita, quam hactenus inedita. (4 vols., ed. G. Cramer), Lausanne and Geneva, 1742. Reprint Hildesheim, 1968.Google Scholar
- Bernoulli, Johann I Briefwechsel. Der Briefwechsel von Johann Bernoulli. (Vol. I, ed. O. Spiess), Basel, 1955.Google Scholar
- Bougainville, L. A. de 1754. Traité du calcul intégral, pour servir de suite à l'Analyse des Infiniment Petits de M. le Marquis de l'Hôpital, Paris, 1754.Google Scholar
- Bourbaki, N. 1960. Eléments d'histoire des mathématiques, Paris, 1960.Google Scholar
- 1941. “Cavalieri, limits and discarded infinitesimals”. Scripta Math. 8 (1941), pp. 79–91.Google Scholar
- Boyer, C. B. 1949. The history of the calculus and its conceptual development, New York, 1949. (Edition cited: New York, 1959.) (Formerly published under the title The concepts of the calculus, New York, 1939.)Google Scholar
- Boyer, C. B. 1956. History of Analytic Geometry, New York, 1956.Google Scholar
- Cauchy, A. L. 1823. Résumé des leçons données à l'Ecole Royale Polytechnique sur le calcul infinitésimal, Paris, 1823. Œuvres (II) IV, pp. 5–261.Google Scholar
- Cauchy, A. L. Œuvres. Œuvres complètes (12 + 14 vols.), Paris, 1882–1938.Google Scholar
- Child, J. M. 1920. The early mathematical manuscripts of Leibniz, translated from the Latin texts, published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child, London, 1920.Google Scholar
- Cohen, H. 1883. Das Prinzip der Infinitesimal-Methode und seine Geschichte. Ein Kapitel zur Grundlegung der Erkenntniskritik, Berlin, 1883.Google Scholar
- D'Alembert, J. L. Différentiel. Article “Différentiel”, in vol. IV (1754) of the Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers, Paris, 1751–1772.Google Scholar
- Descartes, R. 1637. Geometrie (second appendix of the Discours de la Methode), Leiden, 1637.Google Scholar
- 1908. “Über die erste Aufnahme der Leibnizschen Differentialrechnung”, Bibliotheca Mathematica, (III), IX (1908/1909), pp. 309–320.Google Scholar
- Euler, L. 1748. Introductio in Analysin Infinitorum (2 vols.), Lausanne, 1748. Opera (I) VIII–IX (1922, 1945).Google Scholar
- Euler, L. 1755. Institutiones Calculi Differentialis cum eius usu in Analysi finitorum ac doctrina serierum, St. Petersburg, 1755. Opera (I) X (1913).Google Scholar
- Euler, L. 1768. Institutionum calculi integralis volumen primum (... secundum ..., ... tertium ...) (3 vols.), St. Peterburg, 1768–1770. Opera (I) XI–XIII (1913–1914).Google Scholar
- 1778. “De infinities infinitis gradibus tam infinite magnorum quam infinite parvorum.” Acta Academiae Scientiarum Petroplitanae (II) I (1778) 1780. pp. 102–118; Opera (I) XV, pp. 298–313.Google Scholar
- Euler, L. Opera. Opera Omnia (3 ser., many vols., ed. Societas Scientiarum Naturalium Helvetica), Leipzig, etc., 1911-Google Scholar
- Gerhardt, C. I. 1855. Die Geschichte der höheren Analysis, erste Abteilung, Die Entdeckung der höheren Analysis, Halle, 1855. (Cf. Leibniz Elementa.)Google Scholar
- Gerhardt, C. I. 1875. “Zum zweihundertjährigen Jubiläum der Entdeckung des Algorithmus der höheren Analysis durch Leibniz.” Mon.-ber. Kön. Preuss. Akad. Wiss. Berlin 1875 (28 Oct). pp. 588–608.Google Scholar
- Gouye 1701. “Nouvelle méthode pour déterminer aisément les rayons de la développée dans toute sorte de courbe algébraique” (summary of an article by Jakob Bernoulli in Acta Erud. Nov. 1700), Mém. Trév. May–June 1701, pp. 422–430.Google Scholar
- 1935. “La notion de différentielle dans l'enseignement.” Math. Gazette, 19 (1935), pp. 341–342. (orig. 1923).Google Scholar
- Hermann, J. 1700. Responsio ad Clarissimi Viri Bernh Nieuwentijt Considerationes secundas circa calculi differentialis principia editas, Basel, 1700.Google Scholar
- Hofmann, J. E. 1949. Die Entwicklungsgeschichte der Leibnizschen Mathematik während des Aufenthaltes in Paris (1672–1676), München, 1949.Google Scholar
- Hofmann, J. E. 1956. Ueber Jakob Bernoullis Beiträge zur Infinitesimal mathematik, Geneva, 1956.Google Scholar
- 1966. “Vom öffentlichen Bekanntwerden der Leibnizschen Infinitesimalmathematik.” Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B., (II) 175 (1966), pp. 208–254.Google Scholar
- 1931. “Die Differenzenrechnung bei Leibniz (mit Zusätzen von D. Mahnke).” S.-B. Preuss. Akad. Wiss. Phys. Math. Kl. 26 (Berlin 1931), pp. 562–600.Google Scholar
- l'Hopital, G. F. Marquis de 1693. “Methode facile pour déterminer les points des caustiques par réfraction avec une maniére nouvelle de trouver les développées.” Memoires de mathématique et de physique, tirez des registres de l'Académie Royale des Sciences, August 1693, pp. 129–133. (Publ. 1694.)Google Scholar
- l'Hopital, G. F. Marquis de 1696. Analyse des infiniment petits, pour l'intelligence des lignes courbes, Paris, 1696.Google Scholar
- Huygens, C. Œuvres. Œuvres complètes de Christiaan Huygens, publiées par la Société Hollandaise des Sciences (22 vols.), The Hague, 1888–1950.Google Scholar
- 1953. “Quelques remarques historiques sur l'axiomatique du concept de grandeur.” Revue Sci. 91 (1953), pp. 3–14.Google Scholar
- Leibniz, G. W. 1684a. “Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus.” Acta Erud., Oct. 1684, pp. 467–473. Math. Schr. V, pp. 220–226.Google Scholar
- Leibniz, G. W. 1684b. “Additio (...) de dimensionibus curvilineorum.” Acta Erud., Dec. 1684, pp. 585–587. Math. Schr. V, pp. 126–127.Google Scholar
- Leibniz, G. W. 1686. “De geometria recondita et analysi indivisibilium atque infinitorum (...).” Acta Erud., June 1686, pp. 292–300. Math. Schr. V, pp. 226–233.Google Scholar
- Leibniz, G. W. 1689a. “Schediasma de resistentia medii, et motu projectorum in medio resistente.” Acta Erud., Jan., 1689, pp. 38–47. Math. Schr. VI, pp. 135–143.Google Scholar
- Leibniz, G. W. 1689b. “Tentamen de motuum coelestium causis.” Acta Erud., Febr., 1689, pp. 82–96. Math. Schr. VI, pp. 144–161.Google Scholar
- Leibniz, G. W. 1691. “Additio ad schediasma de medii resistentia (...).” Acta Erud., April, 1691, pp. 177–178. Math. Schr. VI, pp. 143–144.Google Scholar
- Leibniz, G. W. 1692a. “De linea ex lineis infinitis ordinatim ductis inter se concurrentibus formata, easque omnes tangente, ac de novo in ea re analysis infinitorum usu.” Acta Erud., April, 1692, pp. 168–171. Math. Schr. V, pp. 266–269.Google Scholar
- Leibniz, G. W. 1692b. “Generalia de natura linearum, anguloque contactus et osculi, provolutionibus, aliisque cognatis, et eorum usibus nonnulis.” Acta Erud., Sept., 1692, pp. 440–446. Math. Schr. V, pp. 279–285.Google Scholar
- Leibniz, G. W. 1694a. “Nova calculi differentialis applicatio et usus, ad multiplicem linearum constructionem, ex data tangentium conditione.” Acta Erud., July, 1694, pp. 311–316. Math. Schr. V, pp. 301–306.Google Scholar
- Leibniz, G. W. 1694b. “Constructio propria problematis de curva isochrona paracentrica. Ubi et generaliora quaedam de natura et calculo differentiali osculorum, (...).” Acta Erud., Aug., 1694, pp. 364bis–375bis. Math. Schr. V, pp. 309–318.Google Scholar
- Leibniz, G. W. 1695a. “Responsio ad nonnullas difficultates a dn. Bernardo Nieuwentijt circa methodum differentialem seu infinitesimalem motas.” Acta Erud., July, 1695, pp. 310–316. Math. Schr. V, pp. 320–326.Google Scholar
- Leibniz, G. W. 1695b. “Addenda ad (...) schediasma proximo mensi julio (...) insertum.” Acta Erud., Aug., 1695, pp. 369–372. Math. Schr. V, pp. 327–328.Google Scholar
- Leibniz, G. W. 1701. “Mémoire de Mr. Leibnitz touchant son sentiment sur le calcul différentiel.” Mém. Trév., Nov., 1701, pp. 270–272. Math. Schr. V, p. 350; also IV, pp. 95–96.Google Scholar
- Leibniz, G. W. 1702a. “Extrait d'une lettre de M. Leibnitz à M. Varignon, contenant l'explication de ce qu'on a rapporté de luy, dans les Mémoires de Trevoux des mois de Novembre et Décembre derniers.” Journal des Savans, 20 March, 1702, pp. 183–186. Math. Schr. IV, pp. 91–95.Google Scholar
- Leibniz, G. W. 1702b. “Specimen novum analyseos quadraturarum pro scientia infiniti, circa summas et quadraturas.” Acta Erud., May, 1702, pp. 210–219. Math. Schr. V, pp. 350–361.Google Scholar
- Leibniz, G. W. 1710a. “Monitum de characteribus algebraicis.” Misc. Berol., 1710, pp. 155–160. Math. Schr. VII, pp. 218–223.Google Scholar
- Leibniz, G. W. 1710b. “Symbolismus memorabilis calculi algebraici et infinitesimalis, in comparatione potentiarum et differentiarum; et de lege homogeneorum transcendentali.” Misc. Berol., 1710, pp. 160–165. Math. Schr. V, pp. 377–382.Google Scholar
- Leibniz, G. W. Analysis Tetragonistica. mss “Analysis Tetragonistica ex centrobaricis.” (25, 26, 29 Oct. and 1 Nov. 1675) in Leibniz Briefwechsel, pp. 147–167.Google Scholar
- Leibniz, G. W. Quad. Arith. Circ. mss “De quadratura arithmetica circuli, ellipseos et hyperbolae cuius corollarium est Trigonometria sine tabulis.” (1676) (Sections relevant to the foundations of the infinitesimal calculus are published in Scholtz 1932; a Praefatio and a Compendium of the mss are published in Leibniz Math. Schr. V, pp. 93–113.) Hist. et Orig. 1846. Historia et Origo calculi differentialis a G. G. Leibnitzio conscripta (ed. C. I. Gerhardt), Hannover, 1846.Google Scholar
- Leibniz, G. W. Elementa. mss “Elementa calculi novi pro differentiis et summis, tangentibus et quadraturis, maximis et minimis, dimensionibus linearum, superficierum, solidorum, aliisque communem calculum transcendentibus.” in Gerhardt 1855, Beilage VI, pp. 149–155. (Also in Leibniz Hist. et Orig. 1846, pp. 32–38.)Google Scholar
- Leibniz, G. W. Scientiarum gradus. mss “Scientiarum diversos gradus nostra imbecillitas facit, ...”; Gerhardt 1875, pp. 595–599.Google Scholar
- Leibniz, G. W. Cum Prodiisset ... mss “Cum prodiisset atque increbuisset Analysis mea infinitesimalis ...” in Leibniz Hist. et Orig. 1846, pp. 39–50.Google Scholar
- Leibniz, G. W. Math. Schr. Mathematische Schriften (7 vols., ed. C. I. Gerhardt), Berlin and Halle, 1849–1863. Reprint Hildesheim, 1961–1962.Google Scholar
- Leibniz, G. W. Phil. Schr. Philosophische Schriften (7 vols., ed. C. I. Gerhardt), Berlin, 1875–1890. Reprint Hildesheim, 1965.Google Scholar
- Leibniz, G. W. Briefwechsel. Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern (ed. C. I. Gerhardt, vol. I only), Berlin, 1899.Google Scholar
- Menger, K. 1955. Calculus, a modern approach, Boston, etc., 1955.Google Scholar
- Nieuwentijt, B. 1694. Considerationes circa analyseos ad quantitates infinité parvas applicatae principia, et calculi differentialis usum in resolvendis problematibus geometricis, Amsterdam, 1694.Google Scholar
- Nieuwentijt, B. 1696. Considerationes secundae circa calculi differentialis principia; et responsio ad virum nobilissimum G. G. Leibnitium, Amsterdam, 1696.Google Scholar
- Ravier, E. 1937. Bibliographie des œuvres de Leibniz, Paris, 1937. Reprint Hildesheim, 1966.Google Scholar
- Robinson, A. 1966. Non-standard Analysis, Amsterdam, 1966.Google Scholar
- Scholtz, L. 1932. Die exakte Grundlegung der Infinitesimalrechnung bei Leibniz. (Diss. Marburg, 1932; partially published Marburg 1934.)Google Scholar
- 1945. “Übersicht über den Band 10 der ersten Serie, Institutiones Calculi Differentialis.” in Euler, Opera (I) IX (1945), pp. XXXII-L.Google Scholar
- Taylor, B. 1715. Methodus Incrementorum directa et inversa, London, 1715.Google Scholar
- 1903. “Die Wandlungen des Indivisibelnbegriffs von Cavalieri bis Wallis.” Bibliotheca Mathematica, (3) 4 (1903), pp. 28–47.Google Scholar
- Weissenborn, H. 1856. Die Prinzipien der höheren Analysis in ihrer Entwicklung von Leibniz bis auf Lagrange, Halle, 1856.Google Scholar
- 1961. “Patterns of mathematical throught in the later seventeenth century.” Arch. Hist. Ex. Sci., 1 (1960/62), pp. 179–388.Google Scholar
Copyright information
© Springer-Verlag 1974