Archive for History of Exact Sciences

, Volume 14, Issue 1, pp 1–90 | Cite as

Differentials, higher-order differentials and the derivative in the Leibnizian calculus

  • H. J. M. Bos
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Apostol, T. M. 1969. Selected papers on the calculus (ed. T. M. Apostol and others). (Math. Assoc. of America) 1969.Google Scholar
  2. Bernoulli, Jakob I 1690. “Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales altitudines emetiatur: et alterius cujusdam problematis propositio.” Acta Erud. May 1690, pp. 217–219. Opera, pp. 421–426.Google Scholar
  3. Bernoulli, Jakob I 1693. “Curvae diacausticae, earum relatio ad evolutas, aliaque nova his affinia. Item: natura osculorum uberius explicata. Celeritates navium definitae. Regulae pro resistentiis, quas figurae in fluido motae patiuntur etc.” Acta Erud. June 1693, pp. 244–256. Opera, pp. 549–573.Google Scholar
  4. Bernoulli, Jakob I 1694. “Curvatura laminae elasticae. Ejus identitas cum curvatura Lintei a pondere inclusi fluidi expansi. Radii circulorum osculantium in terminis simplicissimis exhibiti, una cum novis quibusdam theorematis huc pertinentibus.” Acta Erud., June 1694, pp. 262–276. Opera, pp. 576–600.Google Scholar
  5. Bernoulli, Jakob I Opera. Opera (2 vols.), Geneva, 1744.Google Scholar
  6. Bernoulli, Johann I 1718. “Remarque sur ce qu'on a donné jusqu'ici de solutions des problemes sur les isoperimetres.” Mémoires de l'Académie Royale des Sciences de Paris, (1718), pp. 100–138. Opera II, pp. 235–269.Google Scholar
  7. Bernoulli, Johann I Integral Calculus. Lectiones mathematicae de methodo integralium, aliisque; conscriptae in usum Ill. Marchionis Hopitalii, cum auctor Parisiis ageret annis 1691 et 1692, in Opera III, pp. 385–558.Google Scholar
  8. Bernoulli, Johann I Opera. Opera omnia, tam antea sparsim edita, quam hactenus inedita. (4 vols., ed. G. Cramer), Lausanne and Geneva, 1742. Reprint Hildesheim, 1968.Google Scholar
  9. Bernoulli, Johann I Briefwechsel. Der Briefwechsel von Johann Bernoulli. (Vol. I, ed. O. Spiess), Basel, 1955.Google Scholar
  10. Bougainville, L. A. de 1754. Traité du calcul intégral, pour servir de suite à l'Analyse des Infiniment Petits de M. le Marquis de l'Hôpital, Paris, 1754.Google Scholar
  11. Bourbaki, N. 1960. Eléments d'histoire des mathématiques, Paris, 1960.Google Scholar
  12. 1941. “Cavalieri, limits and discarded infinitesimals”. Scripta Math. 8 (1941), pp. 79–91.Google Scholar
  13. Boyer, C. B. 1949. The history of the calculus and its conceptual development, New York, 1949. (Edition cited: New York, 1959.) (Formerly published under the title The concepts of the calculus, New York, 1939.)Google Scholar
  14. Boyer, C. B. 1956. History of Analytic Geometry, New York, 1956.Google Scholar
  15. Cauchy, A. L. 1823. Résumé des leçons données à l'Ecole Royale Polytechnique sur le calcul infinitésimal, Paris, 1823. Œuvres (II) IV, pp. 5–261.Google Scholar
  16. Cauchy, A. L. Œuvres. Œuvres complètes (12 + 14 vols.), Paris, 1882–1938.Google Scholar
  17. Child, J. M. 1920. The early mathematical manuscripts of Leibniz, translated from the Latin texts, published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child, London, 1920.Google Scholar
  18. Cohen, H. 1883. Das Prinzip der Infinitesimal-Methode und seine Geschichte. Ein Kapitel zur Grundlegung der Erkenntniskritik, Berlin, 1883.Google Scholar
  19. D'Alembert, J. L. Différentiel. Article “Différentiel”, in vol. IV (1754) of the Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers, Paris, 1751–1772.Google Scholar
  20. Descartes, R. 1637. Geometrie (second appendix of the Discours de la Methode), Leiden, 1637.Google Scholar
  21. 1908. “Über die erste Aufnahme der Leibnizschen Differentialrechnung”, Bibliotheca Mathematica, (III), IX (1908/1909), pp. 309–320.Google Scholar
  22. Euler, L. 1748. Introductio in Analysin Infinitorum (2 vols.), Lausanne, 1748. Opera (I) VIII–IX (1922, 1945).Google Scholar
  23. Euler, L. 1755. Institutiones Calculi Differentialis cum eius usu in Analysi finitorum ac doctrina serierum, St. Petersburg, 1755. Opera (I) X (1913).Google Scholar
  24. Euler, L. 1768. Institutionum calculi integralis volumen primum (... secundum ..., ... tertium ...) (3 vols.), St. Peterburg, 1768–1770. Opera (I) XI–XIII (1913–1914).Google Scholar
  25. 1778. “De infinities infinitis gradibus tam infinite magnorum quam infinite parvorum.” Acta Academiae Scientiarum Petroplitanae (II) I (1778) 1780. pp. 102–118; Opera (I) XV, pp. 298–313.Google Scholar
  26. Euler, L. Opera. Opera Omnia (3 ser., many vols., ed. Societas Scientiarum Naturalium Helvetica), Leipzig, etc., 1911-Google Scholar
  27. Gerhardt, C. I. 1855. Die Geschichte der höheren Analysis, erste Abteilung, Die Entdeckung der höheren Analysis, Halle, 1855. (Cf. Leibniz Elementa.)Google Scholar
  28. Gerhardt, C. I. 1875. “Zum zweihundertjährigen Jubiläum der Entdeckung des Algorithmus der höheren Analysis durch Leibniz.” Mon.-ber. Kön. Preuss. Akad. Wiss. Berlin 1875 (28 Oct). pp. 588–608.Google Scholar
  29. Gouye 1701. “Nouvelle méthode pour déterminer aisément les rayons de la développée dans toute sorte de courbe algébraique” (summary of an article by Jakob Bernoulli in Acta Erud. Nov. 1700), Mém. Trév. May–June 1701, pp. 422–430.Google Scholar
  30. 1935. “La notion de différentielle dans l'enseignement.” Math. Gazette, 19 (1935), pp. 341–342. (orig. 1923).Google Scholar
  31. Hermann, J. 1700. Responsio ad Clarissimi Viri Bernh Nieuwentijt Considerationes secundas circa calculi differentialis principia editas, Basel, 1700.Google Scholar
  32. Hofmann, J. E. 1949. Die Entwicklungsgeschichte der Leibnizschen Mathematik während des Aufenthaltes in Paris (1672–1676), München, 1949.Google Scholar
  33. Hofmann, J. E. 1956. Ueber Jakob Bernoullis Beiträge zur Infinitesimal mathematik, Geneva, 1956.Google Scholar
  34. 1966. “Vom öffentlichen Bekanntwerden der Leibnizschen Infinitesimalmathematik.” Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B., (II) 175 (1966), pp. 208–254.Google Scholar
  35. 1931. “Die Differenzenrechnung bei Leibniz (mit Zusätzen von D. Mahnke).” S.-B. Preuss. Akad. Wiss. Phys. Math. Kl. 26 (Berlin 1931), pp. 562–600.Google Scholar
  36. l'Hopital, G. F. Marquis de 1693. “Methode facile pour déterminer les points des caustiques par réfraction avec une maniére nouvelle de trouver les développées.” Memoires de mathématique et de physique, tirez des registres de l'Académie Royale des Sciences, August 1693, pp. 129–133. (Publ. 1694.)Google Scholar
  37. l'Hopital, G. F. Marquis de 1696. Analyse des infiniment petits, pour l'intelligence des lignes courbes, Paris, 1696.Google Scholar
  38. Huygens, C. Œuvres. Œuvres complètes de Christiaan Huygens, publiées par la Société Hollandaise des Sciences (22 vols.), The Hague, 1888–1950.Google Scholar
  39. 1953. “Quelques remarques historiques sur l'axiomatique du concept de grandeur.” Revue Sci. 91 (1953), pp. 3–14.Google Scholar
  40. Leibniz, G. W. 1684a. “Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus.” Acta Erud., Oct. 1684, pp. 467–473. Math. Schr. V, pp. 220–226.Google Scholar
  41. Leibniz, G. W. 1684b. “Additio (...) de dimensionibus curvilineorum.” Acta Erud., Dec. 1684, pp. 585–587. Math. Schr. V, pp. 126–127.Google Scholar
  42. Leibniz, G. W. 1686. “De geometria recondita et analysi indivisibilium atque infinitorum (...).” Acta Erud., June 1686, pp. 292–300. Math. Schr. V, pp. 226–233.Google Scholar
  43. Leibniz, G. W. 1689a. “Schediasma de resistentia medii, et motu projectorum in medio resistente.” Acta Erud., Jan., 1689, pp. 38–47. Math. Schr. VI, pp. 135–143.Google Scholar
  44. Leibniz, G. W. 1689b. “Tentamen de motuum coelestium causis.” Acta Erud., Febr., 1689, pp. 82–96. Math. Schr. VI, pp. 144–161.Google Scholar
  45. Leibniz, G. W. 1691. “Additio ad schediasma de medii resistentia (...).” Acta Erud., April, 1691, pp. 177–178. Math. Schr. VI, pp. 143–144.Google Scholar
  46. Leibniz, G. W. 1692a. “De linea ex lineis infinitis ordinatim ductis inter se concurrentibus formata, easque omnes tangente, ac de novo in ea re analysis infinitorum usu.” Acta Erud., April, 1692, pp. 168–171. Math. Schr. V, pp. 266–269.Google Scholar
  47. Leibniz, G. W. 1692b. “Generalia de natura linearum, anguloque contactus et osculi, provolutionibus, aliisque cognatis, et eorum usibus nonnulis.” Acta Erud., Sept., 1692, pp. 440–446. Math. Schr. V, pp. 279–285.Google Scholar
  48. Leibniz, G. W. 1694a. “Nova calculi differentialis applicatio et usus, ad multiplicem linearum constructionem, ex data tangentium conditione.” Acta Erud., July, 1694, pp. 311–316. Math. Schr. V, pp. 301–306.Google Scholar
  49. Leibniz, G. W. 1694b. “Constructio propria problematis de curva isochrona paracentrica. Ubi et generaliora quaedam de natura et calculo differentiali osculorum, (...).” Acta Erud., Aug., 1694, pp. 364bis–375bis. Math. Schr. V, pp. 309–318.Google Scholar
  50. Leibniz, G. W. 1695a. “Responsio ad nonnullas difficultates a dn. Bernardo Nieuwentijt circa methodum differentialem seu infinitesimalem motas.” Acta Erud., July, 1695, pp. 310–316. Math. Schr. V, pp. 320–326.Google Scholar
  51. Leibniz, G. W. 1695b. “Addenda ad (...) schediasma proximo mensi julio (...) insertum.” Acta Erud., Aug., 1695, pp. 369–372. Math. Schr. V, pp. 327–328.Google Scholar
  52. Leibniz, G. W. 1701. “Mémoire de Mr. Leibnitz touchant son sentiment sur le calcul différentiel.” Mém. Trév., Nov., 1701, pp. 270–272. Math. Schr. V, p. 350; also IV, pp. 95–96.Google Scholar
  53. Leibniz, G. W. 1702a. “Extrait d'une lettre de M. Leibnitz à M. Varignon, contenant l'explication de ce qu'on a rapporté de luy, dans les Mémoires de Trevoux des mois de Novembre et Décembre derniers.” Journal des Savans, 20 March, 1702, pp. 183–186. Math. Schr. IV, pp. 91–95.Google Scholar
  54. Leibniz, G. W. 1702b. “Specimen novum analyseos quadraturarum pro scientia infiniti, circa summas et quadraturas.” Acta Erud., May, 1702, pp. 210–219. Math. Schr. V, pp. 350–361.Google Scholar
  55. Leibniz, G. W. 1710a. “Monitum de characteribus algebraicis.” Misc. Berol., 1710, pp. 155–160. Math. Schr. VII, pp. 218–223.Google Scholar
  56. Leibniz, G. W. 1710b. “Symbolismus memorabilis calculi algebraici et infinitesimalis, in comparatione potentiarum et differentiarum; et de lege homogeneorum transcendentali.” Misc. Berol., 1710, pp. 160–165. Math. Schr. V, pp. 377–382.Google Scholar
  57. Leibniz, G. W. Analysis Tetragonistica. mss “Analysis Tetragonistica ex centrobaricis.” (25, 26, 29 Oct. and 1 Nov. 1675) in Leibniz Briefwechsel, pp. 147–167.Google Scholar
  58. Leibniz, G. W. Quad. Arith. Circ. mss “De quadratura arithmetica circuli, ellipseos et hyperbolae cuius corollarium est Trigonometria sine tabulis.” (1676) (Sections relevant to the foundations of the infinitesimal calculus are published in Scholtz 1932; a Praefatio and a Compendium of the mss are published in Leibniz Math. Schr. V, pp. 93–113.) Hist. et Orig. 1846. Historia et Origo calculi differentialis a G. G. Leibnitzio conscripta (ed. C. I. Gerhardt), Hannover, 1846.Google Scholar
  59. Leibniz, G. W. Elementa. mss “Elementa calculi novi pro differentiis et summis, tangentibus et quadraturis, maximis et minimis, dimensionibus linearum, superficierum, solidorum, aliisque communem calculum transcendentibus.” in Gerhardt 1855, Beilage VI, pp. 149–155. (Also in Leibniz Hist. et Orig. 1846, pp. 32–38.)Google Scholar
  60. Leibniz, G. W. Scientiarum gradus. mss “Scientiarum diversos gradus nostra imbecillitas facit, ...”; Gerhardt 1875, pp. 595–599.Google Scholar
  61. Leibniz, G. W. Cum Prodiisset ... mss “Cum prodiisset atque increbuisset Analysis mea infinitesimalis ...” in Leibniz Hist. et Orig. 1846, pp. 39–50.Google Scholar
  62. Leibniz, G. W. Math. Schr. Mathematische Schriften (7 vols., ed. C. I. Gerhardt), Berlin and Halle, 1849–1863. Reprint Hildesheim, 1961–1962.Google Scholar
  63. Leibniz, G. W. Phil. Schr. Philosophische Schriften (7 vols., ed. C. I. Gerhardt), Berlin, 1875–1890. Reprint Hildesheim, 1965.Google Scholar
  64. Leibniz, G. W. Briefwechsel. Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern (ed. C. I. Gerhardt, vol. I only), Berlin, 1899.Google Scholar
  65. Menger, K. 1955. Calculus, a modern approach, Boston, etc., 1955.Google Scholar
  66. Nieuwentijt, B. 1694. Considerationes circa analyseos ad quantitates infinité parvas applicatae principia, et calculi differentialis usum in resolvendis problematibus geometricis, Amsterdam, 1694.Google Scholar
  67. Nieuwentijt, B. 1696. Considerationes secundae circa calculi differentialis principia; et responsio ad virum nobilissimum G. G. Leibnitium, Amsterdam, 1696.Google Scholar
  68. Ravier, E. 1937. Bibliographie des œuvres de Leibniz, Paris, 1937. Reprint Hildesheim, 1966.Google Scholar
  69. Robinson, A. 1966. Non-standard Analysis, Amsterdam, 1966.Google Scholar
  70. Scholtz, L. 1932. Die exakte Grundlegung der Infinitesimalrechnung bei Leibniz. (Diss. Marburg, 1932; partially published Marburg 1934.)Google Scholar
  71. 1945. “Übersicht über den Band 10 der ersten Serie, Institutiones Calculi Differentialis.” in Euler, Opera (I) IX (1945), pp. XXXII-L.Google Scholar
  72. Taylor, B. 1715. Methodus Incrementorum directa et inversa, London, 1715.Google Scholar
  73. 1903. “Die Wandlungen des Indivisibelnbegriffs von Cavalieri bis Wallis.” Bibliotheca Mathematica, (3) 4 (1903), pp. 28–47.Google Scholar
  74. Weissenborn, H. 1856. Die Prinzipien der höheren Analysis in ihrer Entwicklung von Leibniz bis auf Lagrange, Halle, 1856.Google Scholar
  75. 1961. “Patterns of mathematical throught in the later seventeenth century.” Arch. Hist. Ex. Sci., 1 (1960/62), pp. 179–388.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. J. M. Bos
    • 1
  1. 1.Mathematical InstituteThe University of UtrechtUtrechtThe Netherlands

Personalised recommendations