, Volume 78, Issue 3, pp 293–311 | Cite as

Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals

  • R. Appels
  • W. L. Gerlach
  • E. S. Dennis
  • H. Swift
  • W. J. Peacock


The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.


Repeat Unit Hexaploid Wheat Secondary Constriction Chromosomal Organization Enzyme Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels, R., Driscoll, C., Peacock, W.J.: Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70, 67–89 (1978)Google Scholar
  2. Artavanis-Tsakonas, S., Schedl, P., Tsudi, C., Pirrotta, V., Steward, R., Gehring, W.J.: The 5S genes of Drosophila melanogaster. Cell 12, 1057–1067 (1977)Google Scholar
  3. Azad, A.A., Lane, B.G.: Wheat-embryo ribonucleates I. Subcellular localization of a satellite polyribonucleotide. Canad. J. Biochem. 51, 606–612 (1973)Google Scholar
  4. Azad, A.A., Lane, B.G.: Wheat embryo ribonucleates. IV. Factors that influence the formation and stability of a complex between 5S rRNA and 18S rRNA. Canad. J. Biochem. 53, 320–327 (1975)Google Scholar
  5. Bell, G.I., Degennaro, L.J., Gelfand, D.H., Bishop, R.J., Valenzuela, P., Rutter, W.J.: Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and the location of the regions coding for 5S, 5.8S, 18S and 25S ribosomal RNA's. J. biol. Chem. 252, 8118–8125 (1977)Google Scholar
  6. Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol. 63, 21–39 (1972)Google Scholar
  7. Bishop, J.O., Robertson, F.W., Burns, J.A., Melli, M.: Methods for the analysis of deoxyribonucleic acid-ribonucleic acid hybridization data. Biochem. J. 115, 361–370 (1969)Google Scholar
  8. Carroll, D., Brown, D.D.: Repeating units of Xenopus laevis oocyte-type 5S DNA are heterogeneous in length. Cell 7, 467–475 (1976)Google Scholar
  9. Cockburn, A.F., Newkirk, M.J., Firtel, R.A.: Organization of the ribosomal RNA genes and spacer of Dictyostelium discoideum. Mapping of nontranscribed regions. Cell 9, 605–613 (1976)Google Scholar
  10. Cory, S., Adams, J.M.: A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes. Cell 11, 795–805 (1977)Google Scholar
  11. Crosby, A.R.: Nucleolar activity of lagging chromosomes in wheat. Amer. J. Bot. 44, 813–822 (1957)Google Scholar
  12. Darvey, N.L., Driscoll, C.J.: Nucleolar behaviour in Triticum. Chromosoma (Berl.) 36, 131–139 (1972)Google Scholar
  13. Doershug, E.B.: Placement of genes for ribosomal RNA within the nucleolus organizing body of Zea mays. Chromosoma (Berl.) 55, 43–56 (1976)Google Scholar
  14. Flavell, R.B., O'Dell, M.: Ribosomal genes on homoeologous chromosomes of groups 5 and 6 in hexaploid wheat. Heredity 37, 377–385 (1976)Google Scholar
  15. Flavell, R.B., Smith, D.B.: The role of homoeologous group I chromosomes in the control of rRNA genes in wheat. Biochem. Genet. 12, 271–279 (1974a)Google Scholar
  16. Flavell, R.B., Smith, D.B.: Variation in nucleolar rRNA gene multiplicity in wheat and rye. Chromosoma (Berl.) 47, 327–334 (1974b)Google Scholar
  17. Ford, P.J., Brown, R.D.: Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Cell 8, 485–493 (1976)Google Scholar
  18. Gill, B.S., Kimber, G.: The Giemsa C-banded karyotypes of rye. Proc. nat. Acad. Sci. (Wash.) 71, 1247–1249 (1974)Google Scholar
  19. Givens, J.F., Phillips, R.L.: The nucleolus organizer region of maize. Chromosoma (Berl.) 57, 103–117 (1976)Google Scholar
  20. Glover, D.M., Hogness, D.S.: A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster rDNA. Cell 10, 167–176 (1977)Google Scholar
  21. Hemleben, V., Grierson, D., Dertmann, H.: The use of equilibrium centrifugation of actinomycin D-cesium chloride for the purification of ribosomal DNA. Plant Sci. Lett. 9, 129–135 (1977)Google Scholar
  22. Liang, G.H., Wang, A.S., Phillips, R.L.: Control of ribosomal RNA gene multiplicity in wheat. Canad. J. Genet. Cytol. 19, 425–435 (1977)Google Scholar
  23. Lima-de-Faria, A.: Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68 (1952)Google Scholar
  24. Maizels, N.: Dictyostelium 17S, 25S and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell 9, 431–438 (1976)Google Scholar
  25. McClintock, B.: The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. 21, 294–328 (1934)Google Scholar
  26. Mohan, J., Flavell, R.B.: Ribosomal RNA cistron multiplicity and nucleolar organizers in hexaploid wheat. Genetics 76, 33–44 (1974)Google Scholar
  27. Nath, K., Bollon, A.P.: Organization of the yeast ribosomal gene cluster via cloning and restriction analysis. J. biol. Chem. 252, 6562–6571 (1977)Google Scholar
  28. Pardue, M.L., Brown, D.D., Birnstiel, M.L.: Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma (Berl.) 42, 191–203 (1973)Google Scholar
  29. Pellegrini, M., Manning, J., Davidson, N.: Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10, 213–224 (1977)Google Scholar
  30. Prensky, W.: The radioiodination of RNA and DNA to high specific activities. Methods in cell biol. (D.M. Prescott, ed.), XIII, 121–152 (1976)Google Scholar
  31. Rubin, G.M., Sulston, J.E.: Physical linkage of the 5S cistrons to the 18S and 28S ribosomal RNA cistrons in Saccharomyces cerevisiae. J. molec. Biol. 79, 521–530 (1973)Google Scholar
  32. Sears. E.R.: Nullisomic-tetrasomic combinations in hexaploid wheat. In: Chromosome manipulations and plant genetics (R. Riley and K.R. Lewis, eds). Heredity (Suppl.) 20, 29–45 (1966)Google Scholar
  33. Southern, E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975)Google Scholar
  34. Stambrook, P.J.: Organization of the genes coding for 5S RNA in the Chinese Hamster. Nature (Lond.) 259, 639–641 (1976)Google Scholar
  35. Szabo, P., Elder, R., Steffensen, D.M., Uhlenbeck, O.C.: Quantitative in situ hybridization of ribosomal RNA species to polytene chromosomes of D. melanogaster. J. molec. Biol. 115, 539–563 (1977)Google Scholar
  36. Tartof, K.D., Dawid, I.B.: Similarities and differences in the structure of X and Y chromosome rRNA genes of Drosophila. Nature (Lond.) 263, 27–30 (1976)Google Scholar
  37. Thomas, M., White, R.L., Davis, R.W.: Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. nat. Acad. Sci. (Wash.) 73, 2294–2298 (1976)Google Scholar
  38. Trendelenburg, M.F., Scheer, U., Zentgraf, H., Franke, W.W.: Heterogeneity of spacer lengths in circles of amplified ribosomal DNA of two insect species. Dytiscus marginalis and Acheta domesticus. J. molec. Biol. 108, 453–470 (1976)Google Scholar
  39. Wellauer, P.K., Reeder, R.H.: A comparison of the structural organization of amplified ribosomal DNA from Xenopus mulleri and Xenopus laevis. J. molec. Biol. 94, 151–161 (1975)Google Scholar
  40. Wellauer, P.K., Dawid, I.B.: The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10, 193–212 (1977)Google Scholar
  41. Wellauer, P.K., Dawid, I.B., Brown, D.D., Reeder, R.H.: The molecular basis for length heterogeneity in ribosomal DNA from Xenopus laevis. J. molec. Biol. 105, 461–486 (1976)Google Scholar
  42. Wimber, D.E., Steffensen, D.M.: Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science 170, 639–641 (1970)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. Appels
    • 1
  • W. L. Gerlach
    • 1
  • E. S. Dennis
    • 1
  • H. Swift
    • 1
    • 2
  • W. J. Peacock
    • 1
  1. 1.Division of Plant IndustryCSIROCanberra CityAustralia
  2. 2.Department of BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations