, Volume 85, Issue 4, pp 571–581 | Cite as

Isolation of chromosome clusters from metaphase-arrested HeLa cells

  • James R. Paulson


We have developed a simplified approach for the isolation of metaphase chromosomes from HeLa cells. In this method, all the chromosomes from a cell remain together in a bundle which we call a “metaphase chromosome cluster”. Cells are arrested to 90–95% in metaphase, collected by centrifugation, extracted with non-ionic detergent in a low ionic strength buffer at neutral pH, and homogenised to strip away the cytoskeleton. The chromosome clusters which are released can then be isolated in a crude state by pelleting or they can be purified away from nearly all the interphase nuclei and cytoplasmic debris by banding in a PercollTM density gradient. — This procedure has the advantages that it is quick and easy, metaphase chromatin is recovered in high yield, and Ca++ is not needed to stabilise the chromosomes. Although the method does not yield individual chromosomes, it is nevertheless very useful for both structural and biochemical studies of mitotic chromatin. The chromosome clusters also make possible biochemical and structural studies of what holds the different chromosomes together. Such information could be useful in improving chromosome isolation procedures and for understanding suprachromosomal organisation of the nucleus.


Ionic Strength HeLa Cell Developmental Biology Density Gradient Structural Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph, K.W.: Isolation and structural organisation of human mitotic chromosomes. Chromosoma (Berl.) 76, 23–33 (1980)Google Scholar
  2. Ashley, T.: Specific end-to-end attachment of chromosomes in Ornithogalum virens. J. Cell Sci. 38, 357–367 (1979)Google Scholar
  3. Bahr, G.F., Engler, W.F.: Chromosome interconnections. A discussion of their reality. Cancer Genet. Cytogenet. 1, 177–185 (1980)Google Scholar
  4. Blumenthal, A.B., Dieden, J.D., Kapp, L.N., Sedat, J.W.: Rapid isolation of metaphase chromosomes containing high molecular weight DNA. J. Cell Biol. 81, 255–259 (1979)Google Scholar
  5. Costello, D.P.: Identical linear order of chromosomes in both gametes of the Acoel Turbellarian Polychoerus carmelinis: a preliminary note. Proc. nat. Acad. Sci. (Wash.) 67, 1951–1958 (1970)Google Scholar
  6. Davies, K.E., Young, B.D., Elles, R.G., Hill, M.E., Williamson, R.: Cloning of a representative genomic library of the human X chromosome after sorting by flow cytometry. Nature (Lond.) 293, 374–376 (1981)Google Scholar
  7. DuPraw, E.J.: DNA and chromosomes. New York: Holt, Rinehart and Winston 1970Google Scholar
  8. Fine, R.E., Blitz, A.L.: A chemical comparison of tropomyosins from muscle and non-muscle tissues. J. molec. Biol. 95, 447–454 (1975)Google Scholar
  9. Ghosh, S., Roy, S.C.: Orientation of interphase chromosomes as detected by Giemsa C-bands. Chromosoma (Berl.) 61, 49–55 (1977)Google Scholar
  10. Goyannes, V.J., Matsui, S.I., Sandberg, A.A.: The basis of chromatin fiber assembly within chromosomes studied by histone-DNA crosslinking followed by trypsin digestion. Chromosoma (Berl.) 78, 123–135 (1980)Google Scholar
  11. Hanson, C.V.: Techniques in the isolation and fractionation of eukaryotic chromosomes. In: New techniques in biophysics and cell biology (R.H. Pain and B.J. Smith, eds.), Vol. 2, pp. 43–84. New York: Wiley-Interscience, 1975Google Scholar
  12. Horikawa, M., Sakamoto, T.: Isolation of metaphase chromosomes from synchronised Chinese hamster cells. In: Methods in cell biology, (D.M. Prescott, ed.), Vol. 15, pp. 97–109. New York: Academic Press 1977Google Scholar
  13. Jeppeson, P.G.N., Bankier, A.T., Sanders, L.: Non-histone proteins and the structure of metaphase chromosomes. Exp. Cell Res. 115, 293–302 (1978)Google Scholar
  14. Klobutcher, L.A., Ruddle, F.H.: Phenotype stabilisation and integration of transferred material in chromosome-mediated gene transfer. Nature (Lond.) 280, 657–660 (1979)Google Scholar
  15. Korf, B.R., Diacumakos, E.G.: Random arrangement of mitotic chromosomes in radial metaphases of the Indian muntjac. Cytogenet. Cell Genet. 19, 335–343 (1977)Google Scholar
  16. Korf, B.R., Diacumakos, E.G.: Absence of true interchromosomal connectives in microsurgically isolated chromosomes. Exp. Cell. Res. 130, 377–385 (1980)Google Scholar
  17. Laemmli, U.K., Favre, M.: Maturation of the head of bacteriophage T4 I. DNA packaging events. J. molec. Biol. 80, 575–599 (1973)Google Scholar
  18. Lund, T., Holtlund, J., Kristensen, T., Østvold, A.C., Sletten, K., Laland, S.G.: HMG17 in metaphase-arrested and interphase HeLa S3 cells. FEBS Lett. 133, 84–88 (1981)Google Scholar
  19. Maio, J., Schildkraut, C.: Isolated mammalian metaphase chromosomes I. General characteristics of nucleic acids and proteins. J. molec. Biol. 24, 29–39 (1967)Google Scholar
  20. Maio, J.J., Schildkraut, C.L.: Mammalian metaphase chromosomes. In: Methods in cell biology, (D.M. Prescott, ed.), Vol. 17, pp. 93–99. New York: Academic Press 1978Google Scholar
  21. Marsden, M.P.F., Laemmli, U.K.: Metaphase chromosome structure; evidence for a radial loop model. Cell 17, 849–858 (1979)Google Scholar
  22. Matsui, S.I., Seon, B.K., Sandberg, A.A.: Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromosome condensation. Proc. nat. Acad. Sci. (Wash.) 76, 6386–6390 (1979a)Google Scholar
  23. Matsui, S.I., Weinfeld, H., Sandberg, A.A.: Quantitative conservation of chromatin-bound RNA polymerases I and II in mitosis: Implications for chromosome structure. J. Cell Biol. 80, 451–464 (1979b)Google Scholar
  24. McBride, O.W., Peterson, J.L.: Chromosome-mediated gene transfer in mammalian cells. Ann. Rev. Genet. 14, 321–345 (1980)Google Scholar
  25. Paulson, J.R.: Sulfhydryl reagents prevent dephosphorylation and proteolysis of histones in isolated HeLa metaphase chromosomes. Europ. J. Biochem. 111, 189–197 (1980)Google Scholar
  26. Paulson, J.R., Laemmli, U.K.: The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828 (1977)Google Scholar
  27. Paulson, J.R., Taylor, S.S.: Phosphorylation of histones H1 and H3 and non-histone HMG14 by an endogenous kinase in HeLa metaphase chromosomes. J. biol. Chem. 257, 6064–6072 (1982)Google Scholar
  28. Pertoft, H., Laurent, T.C., Låås, T., Kågedal, L.: Density gradients prepared from colloidal silicaparticles coated by polyvinyl pyrrolidone (Percoll). Analyt. Biochem. 88, 271–282 (1978)Google Scholar
  29. Reisfeld, R.A., Lewis, U.J., Williams, D.E.: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature (Lond.) 195, 281–283 (1962)Google Scholar
  30. Stubblefield, E., Wray, W.: Architecture of the Chinese hamster metaphase chromosome. Chromosoma (Berl.) 32, 262–294 (1971)Google Scholar
  31. Welch, J.P., Lee, C.L.Y., Beatty-DeSana, J.W., Hoggard, M.J., Cooledge, J.W., Hecht, F., McCaw, B.K., Peakman, D., Robinson, A.: Non-random occurrence of 7–14 translocations in human lymphocyte cultures. Nature (Lond.) 255, 241–244 (1975)Google Scholar
  32. Werry, P.A.T.J., Stoffelsen, K., Engels, F.M., Laan, F. van der, Spanjers, A.W.: The relative arrangement of chromosomes in mitotic interphase and metaphase in Haplopappus gracilis. Chromosoma (Berl.) 62, 93–101 (1977)Google Scholar
  33. Wray, W., Stubblefield, E.: A new method for the rapid isolation of chromosomes, mitotic apparatus or nuclei from mammalian fibroblasts at near neutral pH. Exp. Cell Res. 59, 469–478 (1970)Google Scholar
  34. Wullems, G.J., Horst, J. Van der, Bootsma, D.: Incorporation of isolated chromosomes and induction of hypoxanthine phosphoribosyltransferase in Chinese hamster cells. Somat. Cell Genet. 1, 137–152 (1975)Google Scholar
  35. Xeros, N.: Deoxyriboside control and synchronisation of mitosis. Nature (Lond.) 194, 682–683 (1962)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • James R. Paulson
    • 1
  1. 1.Laboratory of Molecular BiologyThe MRC CentreCambridgeEngland

Personalised recommendations