Advertisement

Archive for History of Exact Sciences

, Volume 3, Issue 4–5, pp 249–422 | Cite as

Das Parallelenproblem im Corpus Aristotelicum

  • Imre Tóth
Article

Summary

In the Corpus Aristotelicum are numerous items suggesting that the assertion of the fifth postulate in Euclid'sElements had been preceded by attempts to demonstrate this postulate itself, or some equivalent fundamental proposition, within the rigorous frame of Absolute Geometry in Bolyai's sense. Thus geometers contemporary with Aristotle tried to solve the problem which became known commonly in later centuries as the Problem of Parallels.

Probably these geometers first attempted a direct solution. Only one text at our disposal supports this hypothesis: (1) Anal. Prior. 65 a 4–7. My analysis below in Chapter I shows that a mathematical meaning can be read from this somewhat obscure text only if it is interpreted as an allusion by Aristotle to those geometers who believe they are demonstrating, obviously in an absolute way, the proposition Elem. I 29, equivalent to the fifth postulate, but do not realize that in the process they are using lemmas which result themselves from the proposition to be demonstrated. Such a lemma would assert the uniqueness of the parallels, existence of which was shown in an absolute way in Elem. I 27. My conjecture and reconstruction afford a natural explanation for an inconsequence singular for Book I of the Elements, namely, the presence of the proposition Elem. I 31 in the purely Euclidean part of the book, in spite of the fact that the assertion merely repeats the absolute proposition Elem. I 27 without explicitly containing any Euclidean element.

It is probable that the failure of these direct attempts led to an indirect approach to the problem through reductio ad absurdum of some hypothesis contrary to what was to become Postulate V or to some equivalent proposition. Numerous texts survive from which it is clear that geometers contemporary with Aristotle followed fairly far the consequences of an hypothesis contrary to the fifth postulate, obtaining important results which are partly identical with some theorems of Saccheri. Some of these texts attest first of all that what Saccheri called the Hypothesis of the Obtuse Angle had been stated in an independent and explicit way and that the fundamental result, identical with Prop. 14 of Saccheri'sEuclides ab omni naevo vindicatus (1733), had been obtained, namely, that within Bolyai's Absolute Geometry this hypothesis leads to the remarkable formal contradiction that parallels intersect. This conclusion followed from two different formulations of the Obtuse Angle Hypothesis: (2) Anal. Prior. 66a 11–14, if the exterior angle (formed by a secant which intersects two parallel straight lines) is smaller than the interior angle (opposite and situated on the same side of the secant), and (3) 66a 14–15, if the sum of the angles in a triangle is greater than 2R. Finally, an item in (4) Ethica ad Eudemum 1222b 35–36 shows us that by investigating the Obtuse Angle Hypothesis, the Greek geometers also discovered the quadrilateral in which the sum of the angles is equal to 8R; this quadrilateral, which does not appear even in Saccheri's book, is the maximal quadrilateral of the Riemann geometry, a quadrilateral degenerated into a straight line closed upon itself (Chapter IV 20).

Nowhere in the Corpus does the Hypothesis of the Acute Angle appear in an independent formulation. Nevertheless in (5) Anal. Poster. 90a 33–34 this Hypothesis is mentioned along with the other two: namely, Aristotle states that the essence of the triangle consists in the sum of its angles' being equal to, greater than or less than 2R (Chapter V 27). The formulation of the fifth postulate in the Elements allows greater probability to the conjecture of independent existence of the Acute Angle Hypothesis as well. Indeed, in its original formulation the fifth postulate is redundant, since it unnecessarily specifies in which of the half-planes (bounded by the secant) the intersection of the two straight lines occurs; this specification is itself a theorem. The Acute Angle Hypothesis must have been formulated not only symmetrically to (3) Anal. Prior. 66 a 14–15, that is, the sum of the angles of the triangle is less than 2R, as results from (5) Anal. Poster. 90 a 33–34, but also symmetrically to (2) Anal. Prior. 66 a 11–14. In the latter case the following final conclusion should have been reached in order to reduce to absurdity the Acute Angle Hypothesis: Two straight lines cut by a secant are incident if the sum of the interior angles (on the same side of the secant) is smaller than 2R, and the incidence occurs on that side of the secant where the sum of the angles is less than 2R. In the frame of the Acute Angle Hypothesis, this end conclusion is relevant only if this final specification (concerning the half-plane where the incidence occurs) is explicitly emphasised. According to my conjecture, it was precisely the practical impossibility of reaching this conclusion as a theorem of Absolute Geometry that later determined Euclid to transpose this decisive end conclusion from the Acute Angle Hypothesis, without changing its wording, and to include it among the postulates (Chapter II 13).

A queer passage of Proklos (In primum Euclidis Elementorum, ed. Friedlein p. 368, 26–369, 1) in which the Acute Angle Hypothesis is presented in the form of a Zenonian paradox reinforces the conjecture that this hypothesis was studied independently by the ancient geometers (Chapter VI 33). Thus failure to solve the Problem of Parallels preceded not only the later Non-Euclidean geometry but also Euclidean geometry itself.

The general undifferentiated Contra-Euclidean Hypothesis appears in the following form in all the other texts examined: The sum of the angles in the triangle is not equal to 2R. This hypothesis is nowhere qualified by Aristotle as being absurd or impossible: On the contrary, he takes it always as being just as much justified a priori as is the Euclidean theorem Elem. I 32 which contradicts it. For instance in (6) Anal. Poster. 93 a 33–35 Aristotle puts the problematical alternative: Which of the two propositions is right (or, which of the two constitutes the Logos, the raison d'être of the triangle), the one that states that the sum of the angles in the triangle is equal to 2R, or on the contrary, the one that states that the sum of the angles in the triangle is not equal to 2R (Chapter V 28)?

In a number of texts the theorem Elem. I 32 itself and the general Contra-Euclidean Hypothesis are treated as being a sort of principle, and stress is laid on the idea that the logical consequences of each of these items invariantly preserve its specific (Euclidean or non-Euclidean) geometrical content [(7) 1187 a 35–38 (Chapter IV 18); (8) 1222 b 23–26 (Chapter IV 19); (9) 1187 b 1–2 (Chapter IV 18); (10) 1222 b 41–42 Chapter IV 21); (11) 1187 b 2–4 (Chapter IV 18)]; (12) Physica 200 a 29–30: If the sum of the angles in the triangle is not equal to 2R, then the principles of geometry cannot remain the same (Chapter V 25); (13) Metaph. 1052 a 6–7: It is impossible that the sum of the angles in the triangle be sometimes equal to 2R and sometimes not equal to 2R (Chapter V 24). Finally, the most important item of this sort is to be found in (14) De Caelo 281 b 5–7: If we accept as a starting hypothesis that it is impossible for the sum of the angles in the triangle to be equal to 2R, then the diagonal of the square is commensurable with its side (Chapter III).

Another group of texts reveal Aristotle's attitude as regard these Contra-Euclidean theorems: (15) 1222 b 38–39 (Chapter IV 20); (16) 200 a 16–19 (Chapter VI 30); (17) 402 b 18–21 (Chapter VI 31); (18) 171 a 12–16 (Chapter VI 32); (19) 77 b 22–26 (Chapter V 26); (20) 101 a 15–17 (Chapter VI 31); (21) 76 b 39–77 a 3 (Chapter VI 31). These passages reveal Aristotle's conviction that these paradoxical Contra-Euclidean propositions (which cannot be annihilated by reductio ad absurdum) are nevertheless inacceptable as “bad”, probably because their graphical construction requires curved lines for representing the concept of straight lines.

Finally, another group of texts show that Aristotle sensed in a way the necessity of adding to the foundations of Geometry a new postulate, from which the proposition Elem. I 32 should follow rigorously.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anaritii in decem libros priores Elementorum Euclidis commentarii, ed. M. Curtze, Lipsiae 1899.Google Scholar
  2. Archimedis Opera omnia, recensuit et latine vertit J. L. Heiberg, Lipsiae, vol. I 1880, vol. II 1913, vol. III 1915.Google Scholar
  3. Aristotelis Opera omnia, graece et latine, ed. Guil. Du Val, Lutetiae Parisiorum 1629.Google Scholar
  4. Aristoteles graece, ex recensione Im. Bekkeri, ed. Academia Regia Borussica, Berolini 1831.Google Scholar
  5. Aristotelis Opera omnia, graece et latine, ed. F. Didot, Parisiis 1848–1857.Google Scholar
  6. Aristotelis Stagiritae Organum, Iul. Pacius recensuit et convertit, Morgiis 1584.Google Scholar
  7. Logique d'Aristote (franz. von J. Barthélémy de Saint-Hilaire), Paris 1839–1844.Google Scholar
  8. Aristote, Les Catégories, De l'Interprétation (franz. von J. Tricot) Paris 1959.Google Scholar
  9. Aristotle, Categoriae, De Interpretatione (engl. von E. M. Edghill), Anal. Priora (engl. von A. J. Jenkinson), Anal. Posteriora (engl. von G. R. G. Mure), Topica, De Sophisticis El. (engl. von W. A. Pickard-Cambridge), Oxford 1928; — (The Works of Aristotle, translated under the editorship of W. D. Ross, vol. I).Google Scholar
  10. Aristote, Les premières analytiques (franz. von J. Tricot), Paris 1947.Google Scholar
  11. Aristoteles, Analytica Posteriora (deutsch von E. Rolfes), Leipzig 1922.Google Scholar
  12. Aristote, Les secondes analytiques (franz. von J. Tricot), Paris 1947.Google Scholar
  13. Aristoteles' acht Bücher der Physik, griechisch und deutsch von C. Prantl, Leipzig 1854.Google Scholar
  14. Aristote, Physique (griechisch und französisch von H. Carteron), Paris 1926–1931.Google Scholar
  15. Aristotle, Physica (engl. von P. P. Hardy und R. K. Gaye); De Caelo (engl. von J. L. Stocks), Oxford 1930; (The Works of Aristotle, ed. W. D. Ross, vol. II).Google Scholar
  16. Aristote, Traité du Ciel (franz. von J. Tricot), Paris 1949.Google Scholar
  17. Aristotle, De Anima (engl. von J. A. Smith), Oxford 1931; (The Works of Aristotle, ed. W. D. Ross, vol. III).Google Scholar
  18. Aristote, Traite de l'Ame (franz. von J. Tricot), Paris 1959.Google Scholar
  19. Aristoteles, Über die Seele (deutsch von W. Theiler), Berlin 1959; (Aristoteles Werke in deutscher Übsg. hsgb. von E. Grumach, Bd. 13).Google Scholar
  20. Aristoteles' Metaphysik (deutsch von E. Rolfes), 2. Aufl., Leipzig 1920.Google Scholar
  21. Aristotle, Metaphysica (engl. von W. D. Ross), Oxford 1928; (The Works of Aristotle, ed. W. D. Ross, vol. VIII).Google Scholar
  22. Aristotle's Metaphysics (griechische Ausgabe von W. D. Ross), vol. I, II, Oxford 1953.Google Scholar
  23. Aristote, La Métaphysique (franz. von J. Tricot), Paris 1953.Google Scholar
  24. Aristoteles, Nikomachische Ethik, (deutsch von F. Dirlmeier), 3. Aufl. Berlin 1964; (Aristoteles Werke ed. E. Grumach, Bd. 6).Google Scholar
  25. Aristoteles, Magna Moralia (deutsch von F. Dirlmeier), Berlin 1958; (Aristoteles Werke, ed. E. Grumach, Bd. 8).Google Scholar
  26. Aristoteles, Eudemische Ethik (deutsch von F. Dirlmeier), Berlin 1962; (Aristoteles Werke, ed. E. Grumach, Bd. 7).Google Scholar
  27. Ast, F., Lexicon Platonicum, Lipsiae 1835.Google Scholar
  28. Autolyci de sphaera quae movetur liber, edidit, latina interpret. instrux. F. Hultsch, Lipsiae 1885.Google Scholar
  29. Becker, O., Grundlagen der Mathematik in geschichtlicher Entwicklung, Freiburg-München 2. Aufl., 1964.Google Scholar
  30. Bochenski, I. M., Formale Logik, Freiburg 1956.Google Scholar
  31. Bochenski, I. M., Ancient formal logic, Amsterdam 1957.Google Scholar
  32. (Bolyai, W.), Tentamen juventutem studiosam in elementa matheseos purae introducendi; tom. I cum Appendice triplici, — darin: Iohannes Bolyai de eadem, Appendix, Scientiam Spatii absolute verum exhibens: a veritate aut falsitate Axiomatis XI Euclidei (a priori haud unquam decidenda) independentem; adjecta ad casum falsitatis, quadratura circuli geometrica. Typis Collegium Reformatorum, Maros Vasarhelyini 1832.Google Scholar
  33. Bolyai, J., Appendix (lat. und ungar. von F. Kárteszi), Budapest 1952.Google Scholar
  34. Bonitz, H., Index Aristotelicus, Berolini 1870; (Aristoteles graece, ed. Im. Bekker, Bd. V).Google Scholar
  35. Bonola, R., Die nichteuklidische Geometrie. Historisch-kritische Darstellung ihrer Entwicklung (deutsch von H. Liebmann), Leipzig 1908.Google Scholar
  36. Bourbaki, N., Eléments d'histoire des mathématiques, Paris 1960.Google Scholar
  37. Brunschvicg, L., Les étapes de la philosophie mathématique, Paris 1912.Google Scholar
  38. Cantor, M., Geschichte der Mathematik, Bd. I, 3. Aufl., Leipzig 1907.Google Scholar
  39. Cusanus, N., Opera, ed. Iacobus Faber Stap., Parisiis 1514.Google Scholar
  40. Demel, S., Platons Verhältnis zur Mathematik, Leipzig 1929.Google Scholar
  41. Dühring, E., Robert Mayer, der Galilei des XIX. Jahrhunderts, Chemnitz 1880.Google Scholar
  42. Euclidis Elementa, edidit et latine interpret. I. L. Heiberg, vol. I–III, Lipsiae, 1883–1886; (Euclidis Opera omnia; ediderunt I. L. Heiberg et H. Menge).Google Scholar
  43. Félix, Lucienne, L'aspect moderne des mathématiques, Paris 1957.Google Scholar
  44. Frege, G., Grundlagen der Arithmetik, Breslau 1884.Google Scholar
  45. Frege, G., Grundgesetze der Arithmetik, Bd. I., Jena 1893.Google Scholar
  46. Frenkian, A., Le monde homérique, Paris 1934.Google Scholar
  47. Frenkian, A., La définition de la ligne droite; (Buletinul Fac. de Stiinte din Cernauti, XII, 1938, 238–245).Google Scholar
  48. Frenkian, A., Le postulat chez Euclide et chez les modernes, Paris 1940.Google Scholar
  49. Freudenthal, H., The main trends in the foundations of geometry in the XIX-th century: (Proceedings of the 1960 Congress of Logic, Philos. and Methodol.), Stanford 1962, 613–620.Google Scholar
  50. Gauss, K. F., Werke; Bd. III, Göttingen 1876; Bd. VIII, Göttingen 1900.Google Scholar
  51. Gersonide, L., Commentaire des Introductions aux livres d'Euclide (russisch von I. G. Polsky, in Istoriko Matemat. Issledovania, XI 1958, 763–776).Google Scholar
  52. Gregorius a St. Vincentio, Opus geometricum, Antwerpiae 1647.Google Scholar
  53. Hadamard, J., Histoire des sciences et psychologie de l'invention; (Actes du VII-e Congrés Internat. d'Histoire des Sciences, Jérusalem 1953; Paris 1953, 350–357).Google Scholar
  54. Heath, Th., The thirteen books of Euclid's Elements, Cambridge 1908.Google Scholar
  55. Heath, Th. L., On an allusion in Aristotle to a construction for parallels; (Abhandlungen zur Gesch. der Math. IX 1899, 153–160).Google Scholar
  56. Heath, Th. L., Mathematics in Aristotle, Oxford 1949.Google Scholar
  57. Hegel, G. W. F., Phänomenologie des Geistes, 2. Aufl. (ed. J. Schulze), Berlin 1841.Google Scholar
  58. Hegel, G. W. F., Grundlinien der Philosophie des Rechts (ed. G. Lasson), Leipzig 1911.Google Scholar
  59. Hegel, G. W. F., System der Philosophie, (Sämtliche Werke, ed. H. Glockner, Bd. VIII), Stuttgart 1928.Google Scholar
  60. Heiberg, J. L., Mathematisches zu Aristoteles; (Abhandlungen zur Gesch. der Math., XVIII 1904).Google Scholar
  61. Heronis Alexandrini Opera; vol. IV, Heronis Definitiones, edid. J. L. Heiberg (deutsch von W. Schmidt), Lipsiae 1912.Google Scholar
  62. Hilbert, D., Grundlagen der Geometrie; 4. Aufl., Leipzig 1913.Google Scholar
  63. Hilbert, D. — Bernays, P., Grundlagen der Mathematik, Bd. I., Berlin 1934.Google Scholar
  64. Hobbes, Th., Opera philosophica (ed. G. Molesworth), Londini 1839.Google Scholar
  65. Hofmann, J. E., Das Opus Geometricum des Gregorius a S. Vincentio und seine Einwirkung auf Leibniz; (Abhandlungen der Preuss. Akademie der Wssften., Math. Naturwss. Klasse. 13, 1941).Google Scholar
  66. Hofmann, J. E., Über Herrn Anderhubs Deutung der Theodoros-Stelle in Platons Theaetet; (Deutsche Mathematik VII, 1942, 117–120).Google Scholar
  67. Hofmann, J. E., Die mathematischen Schriften von Nikolaus von Cues, Hamburg 1952.Google Scholar
  68. Iamblichi in Nicomachi arithmeticam introductionem liber (ed. H. Pistelli), Lipsiae 1894.Google Scholar
  69. Ibn-al-Haytam, Livre des commentaires aux introductions des Eléments d'Euclide (russisch von B. A. Rosenfeld; Istoriko Matemat. Issledovania, XI 1958, 743–762).Google Scholar
  70. Jaeger, W., Aristoteles, Geschichte seiner Entwicklung, Berlin 1923.Google Scholar
  71. Kant, Im., Kritik der reinen Vernunft, 2. Aufl., Riga 1787.Google Scholar
  72. Leibniz, G. W., Oevres philosophiques (ed. P. Janet), Paris 1900.Google Scholar
  73. Lucretius, De rerum natura (lat. und deutsch von K. Büchner), Zürich, 1956.Google Scholar
  74. Lukasiewicz, J., The syllogistic of Aristotle, 2. Aufl., Oxford 1958.Google Scholar
  75. Maimon, Mose ben, Führer der Unschlüssigen (deutsch von A. Weiss), Leipzig 1923.Google Scholar
  76. Modzalewsky, L. B., Lobatschewsky; Materialien für eine Biographie (russisch), Moskau 1948.Google Scholar
  77. Mugler, Ch., Dictionnaire historique de la terminologie géométrique grecque, Paris 1959.Google Scholar
  78. Nicomachi Geraseni Pythagorei Introductions arithmeticae libri II, recensuit R. Hoche, Lipsiae 1866.Google Scholar
  79. Omar Khayyam, Kommentarien zu den schwierigen Postulaten der Bücher von Euklid (russisch von B. A. Rosenfeld; Istoriko Matemat Issledovania V 1952, 68–112).Google Scholar
  80. Pappos, La Collection Mathématique (franz. von P. ver Eecke), Paris 1933.Google Scholar
  81. Pascal, B., OEvres, ed. J. Chevalier, Paris 1957.Google Scholar
  82. Pasch, M., Vorlesungen über neuere Geometrie, 2. Aufl., (mit einem Anhang von M. Dehn), Berlin 1926.Google Scholar
  83. Platonis Opera; recensuit et in latinam ling. convertit Fr. Astius, vol. I–IX, Lipsiae 1819–1827.Google Scholar
  84. Platons Sämtliche Werke, Bd. I (deutsch von Fr. Schleiermacher), Wien 1925.Google Scholar
  85. Poincaré, H., Dernières pensées, Paris 1926.Google Scholar
  86. Procli Diadochi in primum Euclidids Elementorum librum commentarii; es recensione G. Friedlein, Lipsiae 1873.Google Scholar
  87. Proklus Diadochus, Kommentar zum ersten Buch von Euklids Elementen (deutsch von L. Schönberger, ed. M. Steck), Halle 1945.Google Scholar
  88. Reidemeister, K., Die Arithmetik der Griechen, Leipzig 1940.Google Scholar
  89. Renouvier, Ch., La philosophie de la règle et du compas; (L'Année Philosophique II 1891, 1–66).Google Scholar
  90. Rosenfeld, B. A., Über die mathematischen Arbeiten von Nasreddin Tusi (russisch; Istoriko Matema. Issled. IV 1951, 489–512).Google Scholar
  91. Rosenfeld, B. A., Les démonstrations du 5-me postulat d'Euclide chez Ibn-al Haytam et Léon Gersonide (russisch; Istoriko Matem. Issled. XI 1958, 733–743).Google Scholar
  92. Rufini, E., La preistoria delle parallele e il postulato di Euclide; (Periodico di Matematiche III 1923, 11–17).Google Scholar
  93. Saccheri, H., Euclides ab omni naevo vindicatus, sive conatus geometricus quo stabiliuntur prima ipsa universae geometriae principia, Mediolani 1733.Google Scholar
  94. Smith, D. E., Euclid, Omar Khayyam and Saccheri (Scripta Mathematica VIII 1935, 5–10).Google Scholar
  95. Stäckel, P.-Engel, F., Die Theorie der Parallellinien von Euklid bis auf Gauss; eine Urkundensammlung, Leipzig 1895.Google Scholar
  96. Stäckel, P., Bolyai Farkas és Bolyai János (ung. von I. Rados), Budapest 1914.Google Scholar
  97. Stäckel, P., Gauss als Geometer (Gauss-Werke Bd. X, 2. Abt.), Leipzig 1923.Google Scholar
  98. Szabó, A., Wie ist die Mathematik zu einer deduktiven Wissenschaft geworden? (Acta Antiqua Acad. Sci. Hung. IV 1956, 109–152).Google Scholar
  99. Szabó, A., Δɛiχνυμι, als mathematischer Terminus für „beweisen“, (Maia, Nuova Serie X 1958, 1–26).Google Scholar
  100. Szabó, A., Die Grundlagen in der Frühgriechischen Mathematik, (Studi Italiani di Filologia Classica, XXX 1958, 1–51).Google Scholar
  101. Szabó, A., Der mathematische Begriff δvναμις und das sog. „geometrische Mittel“ (Maia, XV 1963, 219–256).Google Scholar
  102. Theonis Smyrnei, Expositio rerum mathematicarum ad legendum Platonem utilium; recensuit E. Hiller, Lipsiae 1878.Google Scholar
  103. Tóth, I., La géométrie non euclidienne dans le développement de la pensée (Etudes d'Histoire et de Philosophie des Sciences, Bucarest 1962, 53–70).Google Scholar
  104. Tschernyschewsky, N. G., Ausgewählte philosophische Schriften, Moskau 1953.Google Scholar
  105. Waerden, B. L. van der, Erwachende Wissenschaft; ägyptische, babylonische und griechische Mathematik; Basel-Stuttgart 1956.Google Scholar
  106. Walzer, R., Magna Moralia und aristotelische Ethik; (Dissertation), Berlin 1929.Google Scholar
  107. Weber-Wellstein-Jacobstahl, Elemente der Geometrie, 3. Aufl., (Enzykl. der Elem.-Math., Bd. II), Leipzig-Berlin 1915.Google Scholar
  108. Wieland, W., Die aristotelische Physik; Untersuchungen über die Grundlegung der Naturwissenschaft und die sprachlichen Bedingungen der Prinzipforschung bei Aristoteles, Göttingen 1962.Google Scholar
  109. Zacharias, M., Elementargeometrie, Leipzig 1930.Google Scholar
  110. Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers; publié par M. Diderot et quant a la partie mathématique par M. D'alembert; tome V, Paris 1755.Google Scholar
  111. Scholia in Elementa, ed. I. L. Heiberg (Euclidis Opera omnia ed. I. L. Heiberg et H. Menge, vol. V), Leipzig 1888.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Imre Tóth
    • 1
  1. 1.Lehrstuhl f. Grundlagen d. MathematikUniversität Bukarest

Personalised recommendations