Current Genetics

, Volume 18, Issue 6, pp 511–516 | Cite as

Use of the Tn903 neomycin-resistance gene for promoter analysis in the fission yeast Schizosaccharomyces pombe

  • Christine Lang-Hinrichs
  • Claudia Dössereck
  • Isabelle Fath
  • Ulf Stahl
Original Articles


The bacterial neo gene from transposon Tn903 (Tn601) was used for dominant transformation of the fission yeast Schizosaccharomyces pombe. It was found that high transformation efficiency was dependent on a high level of promoter activity, mediated by the strong promoter of the Schizosaccharomyces pombe alcohol dehydrogenase gene (adh1), as shown by comparing the efficiency of transformation to G418-resistance, the resistance levels of transformed cells, and the in vitro aminoglycoside phosphotransferase activity. On the other hand, the heterologous promoter of the Saccharomyces cerevisiae alcohol dehydrogenase I gene (adc1) is shown to be a weak promoter in Schizosaccharomyces pombe, though its activity is significantly enhanced in cells grown on glycerol as a carbon source. This system for selection and detection of promoter-active sequences may provide a useful basis for the analysis of promoter elements in fission yeast.

Key words

Schizosaccharomyces pombe S. cerevisiae adc1 promoter S. pombe adh1 promoter Aminoglycoside phosphotransferase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beach D, Piper M, Shall S (1980) Nature 284:185–187Google Scholar
  2. Carramolino L, Lozano M, Pérez-Aranda A, Rubio V, Sánchez F (1989) Gene 77:31–38Google Scholar
  3. Chan CSM, Tye B-K (1980) Proc Natl Acad Sci USA 77:6329–6333Google Scholar
  4. Chen XJ, Fukuhara H (1988) Gene 69:181–192Google Scholar
  5. Das S, Kellermann E, Hollenberg CP (1984) J Bacteriol 158:1165–1167Google Scholar
  6. Davis LG, Dibner MD, Battey JF (1986) Basic methods in molecular biology. Elsevier, New York, Amsterdam, LondonGoogle Scholar
  7. Dennda G, Kula MR (1986) Biotechn Appl Biochem 8:459–464Google Scholar
  8. Gmünder H, Kohli J (1989) Mol Gen Genet 220:95–101Google Scholar
  9. Gritz L, Davies J (1983) Gene 25:179–188Google Scholar
  10. Haas MJ, Dowding JE (1978) Methods Enzymol 43:611–628Google Scholar
  11. Hadfield C, Cashmore AM, Meacock PA (1987) Gene 52:59–70Google Scholar
  12. Himeno M, Shibata T, Kawahara Y, Hanaoka Y, Komano T (1984) Agric Biol Chem 48:657–662Google Scholar
  13. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  14. Kudla B, Persuy M-A, Gaillardin C, Heslot H (1988) Nucleic Acids Res 16:8603–8617Google Scholar
  15. Kunze G, Bode R, Rintala H, Hofemeister J (1989) Curr Genet 15:91–98Google Scholar
  16. Lang BF, Wolf K (1984) Mol Gen Genet 196:465–472Google Scholar
  17. Lang BF, Cedergren R, Gray MW (1987) Eur J Biochem 169:527–537Google Scholar
  18. Lang-Hinrichs C, Stahl U (1987) Methods Enzymol 153:366–382Google Scholar
  19. Lang-Hinrichs C, Berndorff D, Seefeldt C, Stahl U (1989) Appl Microbiol Biotechnol 30:388–394Google Scholar
  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor New YorkGoogle Scholar
  21. Marek ET, Schardl CL, Smith DA (1989) Curr Genet 15:421–428Google Scholar
  22. Nasmyth KA, Reed SI (1980) Proc Natl Acad Sci USA 77:2119–2123Google Scholar
  23. Platt SG, Yang N-S (1987) Anal Biochem 162:529–535Google Scholar
  24. Prentki P, Krisch HM (1982) Gene 17:189–196Google Scholar
  25. Russell PR (1983) Nature 301:167–169Google Scholar
  26. Russell P, Nurse P (1986) Cell 45:145–153Google Scholar
  27. Sakai K, Yamamoto M (1986) Agric Biol Chem 50:1177–1182Google Scholar
  28. Sakai K, Sakaguchi J, Yamamoto M (1984) Mol Cell Biol 4:651–656Google Scholar
  29. Turgeon BG, Garber RC, Yoder OC (1987) Mol Cell Biol 7:3297–3305Google Scholar
  30. Webster TD, Dickson RC (1983) Gene 26:243–252Google Scholar
  31. Zhu J, Contreras R, Fiers W (1986) Gene 50:225–237Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Christine Lang-Hinrichs
    • 1
  • Claudia Dössereck
    • 2
  • Isabelle Fath
    • 1
  • Ulf Stahl
    • 1
    • 2
  1. 1.Institut für Gärungsgewerbe und BiotechnologieBerlin 65Germany
  2. 2.FG Mikrobiologie und GenetikTechnische Universität BerlinBerlin 65Germany

Personalised recommendations