Advertisement

Optical and Quantum Electronics

, Volume 26, Issue 7, pp S691–S703 | Cite as

The role of vertical transport and capture of electrons and holes for the transient optical response in quantum-well heterostructures

  • H. Hillmer
  • T. Kuhn
  • A. Greiner
  • S. Hansmann
  • H. Burkhard
Contributed Paper

Abstract

The transient optical response of quantum wells (QWs) after optical and electrical carrier injection into the barrier layers is studied experimentally and theoretically. We have varied the transport geometry in GaAs/AlGaAs and InGaAs/InAlGaAs heterostructures and emphasize the basic principles for a theoretical treatment of electron and hole capture into QWs for a proper description of vertical carrier transport in the barriers of QW heterostructures. Comparing our experimental data with the results of theoretical model calculations, we determine the capture, reflection and transmission probabilities, the ambipolar diffusivities and the ambipolar mobilities in the barriers of GaAs/AlGaAs, as a model system. The temporal evolution of the electron and the hole capture current densities at the QWs are studied in detail for a wide variation of the injected carrier densities. Amplitude modulation experiments are performed for InGaAs/InAlGaAs QW laser devices providing increasing 3 dB frequencies for decreasing confinement layer thickness, indicating the influence of carrier transport in the barriers.

Keywords

Barrier Layer Carrier Transport Transmission Probability Vertical Transport Laser Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. NAGARAJAN, M. ISHIKAWA, T. FUKUSHIMA, R. S. GEELS and J. E. BOWERS, IEEE J. Quantum Electron. 28 (1992) 1990.Google Scholar
  2. 2.
    R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, IEEE Photon. Technol. Lett. 4 (1992) 121.Google Scholar
  3. 3.
    M. AOKI, K. UOMI, T. TSUCHIYA, M. SUZUKI and N. CHINONE, Electron. Lett. 26 (1990) 1841.Google Scholar
  4. 4.
    H. HIRAYAMA, Y. MIYAKE and M. ASADA, IEEE J. Quantum Electron. 28 (1992) 68.Google Scholar
  5. 5.
    N. TESSLER, R. NAGAR and G. EISENSTEIN, IEEE J. Quantum Electron. 28 (1992) 2242.Google Scholar
  6. 6.
    N. TESSLER and G. EISENSTEIN, Appl. Phys. Lett. 62 (1993) 10.Google Scholar
  7. 7.
    S. C. KAN, D. VASSILOSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 61 (1992) 752.Google Scholar
  8. 8.
    A. GRABMAIER, M. SCHÖFTHALER and A. HANGLEITER, Appl. Phys. Lett. 62 (1993) 52.Google Scholar
  9. 9.
    L. F. LESTER and B. K. RIDLEY, J. Appl. Phys. 72 (1992) 2579.Google Scholar
  10. 10.
    E. O. GÖBEL, H. JUNG, J. KHL and K. PLOOG, Phys. Rev. Lett. 51 (1983) 1588.Google Scholar
  11. 11.
    D. BIMBERG, J. CHRISTEN, A. STECKENBORN, G. WEIMANN and W. SCHLAPP, J. Luminescence 30 (1985) 562.Google Scholar
  12. 12.
    H. HILLMER, G. MAYER, A. FORCHEL, K. S. LÖCHNER and E. BAUSER, Appl. Phys. Lett. 49 (1986) 948.Google Scholar
  13. 13.
    J. A. BRUM, T. WEIL, J. NAGLE and B. VINTER, Phys. Rev. B 34 (1986) 2381.Google Scholar
  14. 14.
    D. J. WESTLAND, D. MIHAILOVIC, J. F. RYAN and M. D. SCOTT, Appl. Phys. Lett. 51 (1987) 590.Google Scholar
  15. 15.
    J. BENHLAL, P. LAVALLARD, C. GOURDON, R. GRUOSSON, M. L. ROBLIN, A. M. POUGNET and R. PLANEL, J. de Phys. Col. C5 (1987) 471.Google Scholar
  16. 16.
    B. DEVEAUD, J. SHAH, T. C. DAMEN, B. LAMBERT and A. REGRENY, Phys. Rev. Lett. 58 (1987) 2582.Google Scholar
  17. 17.
    J. FELDMANN, G. PETER, E. O. GÖBEL, K. LEO, H.-J. POLLAND, K. PLOOG, K. FUJIWARA and T. NAKAYAMA, Appl. Phys. Lett. 51 (1987) 226.Google Scholar
  18. 18.
    B. DEVEAUD, J. SHAH, T. C. DAMEN, B. LAMBERT, A. CHOMETTE and A. REGRENY, IEEE J. Quantum Electron. 24 (1988) 1641.Google Scholar
  19. 19.
    B. DEVEAUD, F. CLÉROT, A. REGRENY, K. FUJIWARA, K. MITSUNAGA and J. OHTA, Appl. Phys. Lett. 55 (1989) 2646.Google Scholar
  20. 20.
    H. HILLMER, A. FORCHEL, T. KUHN, G. MAHLER and H. P. MEIER, Phys. Rev. B 43 (1991) 13992.Google Scholar
  21. 21.
    T. KUHN and G. MAHLER, Solid-State Electron. 32 (1989) 1851.Google Scholar
  22. 22.
    A. WELLER, P. THOMAS, J. FELDMANN, G. PETER and E. O. GÖBEL, Appl. Phys. A 48 (1989) 509.Google Scholar
  23. 23.
    S. WEISS, J. M. WIESENFELD, D. S. CHEMLA, G. RAYBON, G. SUCHA, M. WEGENER, G. EISENSTEIN, C. A. BURRUS, A. G. DENTAI, U. KOREN, B. I. MILLER, H. TEMKIN, R. A. LOGAN and T. TANBUN-EK, Appl. Phys. Lett. 60 (1992) 9.Google Scholar
  24. 24.
    P. W. M. BLOM, C. SMIT, J. E. M. HAVERKORT and J. H. WOLTER, Phys. Rev. B 47 (1993) 2072.Google Scholar
  25. 25.
    M. R. X. BARROS, P. C. BECKER, D. MORRIS, B. DEVEAUD, A. REGRENY and F. BEISSER, Phys. Rev. B 47 (1993) 10951.Google Scholar
  26. 26.
    G. BACHER, C. HARTMANN, H. SCHWEIZER, T. HELD, G. MAHLER and H. NICKEL, Phys. Rev. B 47 (1993) 9545.Google Scholar
  27. 27.
    B. R. NAG, Electron Transport in Compound Semiconductors, Springer Series in Solid-State Sciences, vol. 11 (Springer, Berlin, 1980).Google Scholar
  28. 28.
    P. A. MARKOWICH, C. A. RINGHOFER and C. SCHMEISER, Semiconductor Equations (Springer, Wien, 1990).Google Scholar
  29. 29.
    T. KUHN and G. MAHLER, Phys. Rev. B 40 (1989) 12147.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Hillmer
    • 1
  • T. Kuhn
    • 2
  • A. Greiner
    • 2
  • S. Hansmann
    • 1
  • H. Burkhard
    • 1
  1. 1.Forschungs- und TechnologiezentrumDeutsche TelekomDarmstadtGermany
  2. 2.Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations