Current Genetics

, Volume 27, Issue 1, pp 62–69 | Cite as

Genetic requirements for initiating asexual development in Aspergillus nidulans

  • Jenny Wieser
  • Bee Na Lee
  • John W. FondonIII
  • Thomas H. Adams
Original Paper


Conidiation in the filamentous ascomycete Aspergillus nidulans requires activation of brlA, a well-characterized transcriptional regulator of genes that are induced specifically during asexual development. We have isolated and characterized developmental mutations in six loci, designated fluG, flbA, flbB, flbC, flbD, and flbE, that result in defective development and reduced brlA expression. These mutants grow indeterminately to produce masses of aerial hyphae resulting in the formation of cotton-like colonies with a “fluffy” morphology. The results of growth and epistasis tests involving all pairwise combinations of fluffy mutations indicate complex hierarchical relationships among these loci. We discuss these genetic interactions and propose that there are multiple mechanisms for activating brlA.

Key words

Conidiation Fungi brlA Microbial development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams TH, Timberlake WE (1990) Mol Cell Biol 10: 4912–4919Google Scholar
  2. Adams TH, Boylan MT, Timberlake WE (1988) Cell 54: 353–362Google Scholar
  3. Adams TH, Deising H, Timberlake WE (1990) Mol Cell Biol 10: 1815–1817Google Scholar
  4. Adams TH, Hide WA, Yager LN, Lee BN (1992) Mol Cell Biol 12: 3827–3833Google Scholar
  5. Aguirre J, Ortiz R, Clutterbuck J, Tapia R, Cardenas M (1993) Fungal Genet Newslett 40 A: 68Google Scholar
  6. Bal J, Kajtaniak EM, Pieniazek NJ (1977) Mutat Res 56: 153–156Google Scholar
  7. Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE (1987) Mol Cell Biol 7: 3113–3118Google Scholar
  8. Clutterbuck AJ (1969) Genetics 63: 317–327Google Scholar
  9. Clutterbuck AJ (1973) Genet Res 21: 291–296Google Scholar
  10. Dietzel C, Kurjan J (1987) Mol Cell Biol 7: 4169–4177Google Scholar
  11. Dorn GL (1970) Genetics 66: 267–279Google Scholar
  12. Han S, Navarro J, Greve RA, Adams TH (1993) EMBO J 12: 2449–2457Google Scholar
  13. Käfer E (1977) Adv Genet 19: 33–131Google Scholar
  14. Kurjan J (1992) Annu Rev Biochem 61: 1097–1129Google Scholar
  15. Lee BN, Adams TH (1994a) Genes Dev 8: 641–651Google Scholar
  16. Lee BN, Adams TH (1994b) Mol Microbiol (in press)Google Scholar
  17. Luscher B, Eisenman RN (1990) Genes Dev 4: 2235–2241Google Scholar
  18. Martinelli SD, Clutterbuck AJ (1971) J Gen Microbiol 69: 261–268Google Scholar
  19. Miller J, McLachlan AD, Klug A (1985) EMBO J 41: 1609–1614Google Scholar
  20. Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) Adv Genet 5: 141–238Google Scholar
  21. Tamame M, Antequera F, Santos E (1988) Mol Cell Biol 8: 3043–3050Google Scholar
  22. Tamame M, Antequera F, Villanueva JR, Santos T (1983) Mol Cell Biol 3: 2287–2297Google Scholar
  23. Timberlake WE (1990) Annu Rev Genet 24: 5–36Google Scholar
  24. Yager LN, Kurtz MB, Champe SP (1982) Dev Biol 93: 92–103Google Scholar
  25. Yelton MM, Hamer JE, Timberlake WE (1984) Proc Natl Acad Sci USA 81: 1470–1474Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jenny Wieser
    • 1
  • Bee Na Lee
    • 1
  • John W. FondonIII
    • 1
  • Thomas H. Adams
    • 1
  1. 1.Department of BiologyTexas A & M UniversityCollege StationUSA

Personalised recommendations