Advertisement

Molecular and General Genetics MGG

, Volume 206, Issue 1, pp 95–100 | Cite as

Reduced transcription of the rnh gene in Escherichia coli mutants expressing the SOS regulon constitutively

  • Ariel Quiñones
  • Claudia Kücherer
  • Reinhard Piechocki
  • Walter Messer
Article

Summary

We have analysed the transcription levels for the convergently overlapping Escherichia coli genes for the DNA polymerase III proofreading function (dnaQ) and ribonuclease H (rnh). The two tandem dnaQ promoters are about three times more active than the single rnh promoter as shown by analysing the level of in vivo transcription using dnaQ-galK and rnh-galK fusions. In E. coli mutants constitutively expressing the pleiotropic SOS response, which includes activities that enhance DNA repair, recombination and mutagenesis, a strong reduction in rnh transcription was observed. The lex A51 recA441 double mutant which fully expresses the SOS response shows the strongest reduction in rnh transcription and the highest increase in dnaQ transcription. Nuclease S1 mapping supported the finding that a constitutive expression of SOS function leads to a strong reduction in rnh transcription.

Key words

rnh and dnaQ transcription galK fusions S1 mapping SOS functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732Google Scholar
  2. Bialy H, Kogoma T (1986) RNase H is not involved in the induction of stable DNA replication in Escherichia coli. J Bacteriol 165:321–323Google Scholar
  3. Blanco M, Herrera G, Collada P, Rebollo J, Botella LM (1982) Influence of recA protein on induced mutagenesis. Biochimie 64:633–636Google Scholar
  4. Brandsma JA, Bosch D, Backendorf C, Van der Putte P (1983) The ssb gene of E. coli is inducible: coregulation with the urvA gene. Nature 305:243–245Google Scholar
  5. Brosius J, Cate R, Perlmutter P (1982) Precise location of two promoters for the β-Lactamase gene of pBR322. J Biol Chem 257:9205–9210Google Scholar
  6. Chakraborty T, Yoshinaga K, Lother H, Messer W (1982) Purification of the E. coli dnaA gene product. EMBO J. 1:1545–1549Google Scholar
  7. Crouch RJ, Dirksen ML (1982) Ribonucleases H In: Linn SM, Roberts RJ (eds) Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 211–241Google Scholar
  8. de Massy B, Fayet O, Kogoma T (1984) Multiple origin usage for DNA replication in sdrA (rnh) mutants of Escherichia coli K-12:initiation in the absence of oriC. J Mol Biol 178:227–236Google Scholar
  9. Fuller RS, Kornberg A (1983) Purified dnaA protein in initiation of replication at the E. coli chromosomal origin of replication. Proc Natl Acad Sci USA 80:5817–5821Google Scholar
  10. Hiraga S (1976) Novel F prime factors able to replicate in E. coli Hfr strains. Proc Natl Acad Sci USA 73:198–202Google Scholar
  11. Horiuchi T, Maki H, Maruyama M, Sekiguchi M (1981) Identification of the dnaQ gene product and location of the structural gene for RNase H of Escherichia coli by cloning of the genes. Proc Natl Acad Sci USA 78:3770–3774Google Scholar
  12. Kogoma T (1978) A novel Escherichia coli mutant capable of DNA replication in the absence of protein synthesis. J Mol Biol 121:55–69Google Scholar
  13. Kogoma T (1986) RNase H-defective mutants of Escherichia coli. J Bacteriol 166:361–363Google Scholar
  14. Kogoma T, von Meyenburg K (1983) The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J 2:463–468Google Scholar
  15. Kogoma T, Torrey TA, Connaughton MJ (1979) Induction of UVresistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function. Mol Gen Genet 176:1–9Google Scholar
  16. Kücherer C, Lother H, Kölling R, Schauzu MA, Messer W (1986) Regulation of transcription of the chromosomal dnaA gene of E. coli. (Submitted for publication)Google Scholar
  17. Lother H, Kölling R, Kücherer C, Schauzu M (1985) anaA proteinregulated transcription: effects on the in vitro replication of E. coli minichromosomes. EMBO J 4:555–560Google Scholar
  18. Maaloe O, Hanawalt PC (1961) Thymine deficiency and the normal DNA replication cycle. J Mol Biol 3:144–155Google Scholar
  19. Maniatis T, Fritsch EF, Sambrock J (1982) Molecular Cloning — A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  20. McEntee K, Weinstock G (1981) The tif-1 mutation alters polynucleotide recognition by the RecA protein of E. coli. Proc Natl Acad Sci USA 78:6061–6065Google Scholar
  21. McKenney K, Shimatake H, Court D, Schmeissner U, Brade C, Rosenberg M (1981) A system to study promoter and terminator signals recognized by Escherichia coli RNA polymerase. In: Chirikjain I, Papas T (eds) Gene amplification and analysis, Vol 2. Elsevier North-Holland, New York, pp 383–415Google Scholar
  22. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  23. Minton NP (1984) Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31:269–273Google Scholar
  24. Mount DW, Low KB, Edmiston S (1972) Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light induced mutations. J Bacteriol 112:886–893Google Scholar
  25. Nomura T, Aiba H, Ishihama A (1985) Transcriptional organization of the convergent overlapping dnaQ-rnh genes of Escherichia coli. J Biol Chem 260:7122–7125Google Scholar
  26. Phizicky EM, Roberts JW (1981) Induction of SOS functions: regulation of proteolytic activity of E. coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell 25:259–267Google Scholar
  27. Rak B, von Reutern M (1984) Insertion element IS5 contains a third gene EMBO J 3:807–811Google Scholar
  28. Scheuermann R, Tam S, Burgers PMJ, Lu C, Echols M (1983) Identification of the ε-subunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product: A fidelity subunit for DNA replication. Proc Natl Acad Sci USA 80:7085–7089Google Scholar
  29. Silhavy T, Berman M, Enquist L (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Villani G, Pierre A, Salles B (1984) Quantification of SSB protein in E. coli and its variation during RecA protein induction. Biochimie 66:471–476Google Scholar
  31. von Meyenburg K, Hansen FG, Riise E, Bergmans H, Meijer M, Messer W (1979) Origin of replication, oriC, of the E. coli chromosome: genetic mapping and minichromosome replication. Cold Spring Harbor Symp Quant Biol 43:121–128Google Scholar
  32. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93Google Scholar
  33. Witkin EM, Kogoma T (1984) Involvement of the activated form of RecA protein in SOS mutagenesis and stable DNA replication in Escherichia coli. Proc Natl Acad Sci USA 81:7539–7543Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ariel Quiñones
    • 1
  • Claudia Kücherer
    • 2
  • Reinhard Piechocki
    • 1
  • Walter Messer
    • 2
  1. 1.Wissenschaftsbereich GenetikMartin-Luther-UniversitätHalle (Saale)German Democratic Republic
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlin 33

Personalised recommendations