Advertisement

Chromosoma

, Volume 14, Issue 6, pp 589–600 | Cite as

Genome analysis in Triticum zhukovskyi, a new hexaploid wheat

  • M. D. Upadhya
  • M. S. Swaminathan
Article

Summary

  1. 1.

    The karyotype of T. zhukovskyi, a hexaploid wheat recently recorded from Western Georgia of the U.S.S.R., revealed that it has 3 pairs of satellited chromosomes. Two of these resemble closely the two pairs present in T. timopheevi. The other pair is similar in arm ratio to the pair found in T. monococcum var. hornemanni. Micro-satellites usually found in varieties of T. monococcum did not occur in T. zhukovskyi.

     
  2. 2.

    A maximum of 4 quadrivalents per cell was found at meiosis in T. zhukovskyi, the average being 1.35 per cell. Pollen and seed fertility were normal.

     
  3. 3.

    In crosses between T. zhukovskyi and T. spelta, T. macha and T. vavilovi, only the F1 plants of the cross with spelta survived. There was an average frequency of 15.1 univalents per cell in the zhukovskyispelta hybrid. Thus, the partial failure of chromosome pairing in this hybrid is similar to that usually found in hybrids between T. timopheevi and other tetraploid species.

     
  4. 4.

    From a discussion of the data, it is suggested that T. zhukovskyi might have arisen through chromosome doubling in the hybrid T. timopheevi × T. monococcum var. hornemanni. If this conclusion is supported by future experiments, T. zhukovskyi will be the first hexaploid wheat to have a genomic constitution other than ABD.

     

Keywords

Developmental Biology Genome Analysis Future Experiment Chromosome Pairing Average Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, G. D. H., Mary Lupton and R. Riley: Investigations in the Triticinae III. The morphological and field behaviour of the A2 generation of interspecific and intergeneirc amphidiploids. J. agri. Sci. 46, 199–231 (1955).Google Scholar
  2. Bowden, W. M.: The taxonomy and nomenclature of wheats, barleys, and ryes and their wild relatives. Canad. J. Bot. 37, 657–684 (1959).Google Scholar
  3. Chin, T. C., and C. S. Chwang: Cytological studies of hybrids with „Makha“ wheat. Bull. Torrey Bot. Club 71, 356–366 (1944).Google Scholar
  4. Dobzhansky, T.: Genetics and the origin of species, 3rd ed. New York 1952.Google Scholar
  5. Gaul, H.: A critical survey of genome analysis. Proc. First Int. Wheat Genet. Symp. 1959, pp. 194–206.Google Scholar
  6. Jakubziner, M. M.: New wheat species. Proc. First. Int. Wheat Genet. Symp. 1959, pp. 207–220.Google Scholar
  7. Kostoff, D.: Chromosome behaviour in Triticum hybrids and allied genera. I. Interspecific hybrids with T. timopheevi. Proc. Indian Acad. Sci. 5 — Bot. 231–236 (1937a); - Studies on the polyploid plants. XI. Amphidiploid Triticum timopheevi Zhuk. × Triticum monococcum L. Z. Pflanzenzücht. 21, 41–45 (1937b).Google Scholar
  8. Kuckuck, H.: Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z. Pflanzenzücht. 41, 205–226 (1959).Google Scholar
  9. Lilienfeld, F. A., u. H. Kihara: Genomanalyse bei Triticum und Aegilops V. Cytologia (Tokyo) 6, 101–123 (1934).Google Scholar
  10. MacKey, J.: The taxonomy of hexaploid wheat. Svensk bot. Tidskr. 48, 579–590 (1954).Google Scholar
  11. Riley, R.: The diploidisation of polyploid wheat. Heredity 15, 407–429 (1960).Google Scholar
  12. Roy, R. P.: Semi-lethal hybrids in crosses of species and synthetic amphidiploids of Triticum and Aegilops. Ind. J. Genet. Plant Breed. 15, 88–98 (1955).Google Scholar
  13. Sachs, L.: Chromosome behaviour in species hybrids with Triticum timopheevi. Heredity 7, 49–58 (1953a);- The occurrence of hybrid semilethals and the cytology of Triticum macha and Triticum vavilovi. J. Agr. Sci. 43, 204–213 (1953b).Google Scholar
  14. Sears, E. R.: The systematics, cytology and genetics of wheat. In: Handbuch der Pflanzenzüchtung, Bd. 2, S. 164–187. Berlin: Paul Parey 1959.Google Scholar
  15. Stephens, S. G.: The genetics of Corky. II. Further studies on its genetic basis in relation to the general problem of interspecific isolation mechanism. J. Genet. 50, 9–20 (1950).Google Scholar
  16. Swaminathan, M. S., and M. V. P. Rao: Macro-mutations and sub-specific differentiation in Triticum. Wheat Inform. Serv. (Kyoto) 6, 9–10 (1961).Google Scholar
  17. Upadhya, M. D.: The use of α-bromonaphthalene, rapid hot fixation, and distributed pressure squashing for chromosomes of Triticinae. Stain Technol. (1963, in Press).Google Scholar
  18. Wagenaar, E. B.: Studies on the genome constitution of T. timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Canad. J. Genet. Cytol. 3, 47–60 (1961).Google Scholar
  19. Watanabe, Y., K. Mukade and K. Kokubun: Studies on the production of amphidiploids as the sources of resistance to leaf-rust in wheats. II. Cytogenetical studies on the F1 hybrids and the amphidiploids. T. timopheevi Zhuk. × T. monococcum L. [Japanese.] Jap. J. Breeding 6, 23–31 (1956).Google Scholar
  20. — and S. Saito: Studies on the production of amphidiploids as the sources of resistance to leaf-rust in wheats. I. Cytogenetical studies on the F1 hybrids and the amphidiploids T. timopheevi Zhuk. x Ae. squarrosa L. [Japanese.] Jap. J. Breeding 5, 7–18 (1955).Google Scholar
  21. Wilson, J. A., and W. M. Ross: Male sterility interaction of the T. aestivum nucleus and T. timopheevi cytoplasm. Wheat Inform. Serv. (Kyoto) 14, 29–31 (1962).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • M. D. Upadhya
    • 1
  • M. S. Swaminathan
    • 1
  1. 1.Division of BotanyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations