, Volume 42, Issue 1, pp 1–22

Synthesis and characterization of amplified DNA in oocytes of the house cricket, Acheta domesticus (Orthoptera: Gryllidae)

  • M. Donald Cave


At a time in the life cycle when a large proportion of the oocytes of Acheta incorporate 3H-thymidine into an extrachromosomal DNA body, synthesis of a satellite or minor band DNA, the density of which is greater than main band DNA, is readily detected. Synthesis of the satellite DNA is not detectable in tissues, the cells of which do not have a DNA body, or in ovaries in which synthesis of extrachromosomal DNA by the oocytes is completed. The DNA body contains the amplified genes which code for ribosomal RNA. However, less than 1 percent of the satellite DNA, all of which appears to be amplified in the oocyte, is complementary to ribosomal 18S and 28S RNA. In situ hybridization demonstrates that non-ribosomal elements, like the ribosomal elements of the satellite DNA, are localized in the DNA body.

Abbreviations used


ribosomal RNA, includes 18S and 28S RNA


gene sequences complementary to rRNA


complementary RNA synthesized in vitro


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E. R., Cave, M. D.: Formation, transport, and storage of ribonucleic acid containing structures in oocytes of Acheta domesticus (Orthoptera). Z. Zellforsch. 92, 477–486 (1968).Google Scholar
  2. Allen, E. R., Cave, M. D.: Nucleolar organization in oocytes of Gryllid crickets: Subfamilies Gryllinae and Nemobiinae. J. Morph. 137, 433–447 (1972).Google Scholar
  3. Bayreuther, K.: Die Oogenese der Tipuliden. Chromosoma (Berl.) 7, 508–557 (1956).Google Scholar
  4. Bayreuther, K.: Extrachromosomales DNS-haltiges Material in der Oogenese der Flöhe. Z. Naturforsch. 12b, 458–463 (1957).Google Scholar
  5. Birnstiel, M., Speirs, J., Purdom, I., Jones, K.: Properties and composition of the isolated ribosomal satellite of Xenopus laevis. Nature (Lond.) 219, 454–463 (1968).Google Scholar
  6. Bishop, J. O., Robertson, F. W., Burns, J. A., Melli, M.: Methods for the analysis of deoxyribonucleic acid—ribonucleic acid hybridization data. Biochem. J. 115, 361–370 (1969).Google Scholar
  7. Brown, D. D., Dawid, I. B.: Specific gene amplification in oocytes. Science 160, 272–280 (1968).Google Scholar
  8. Brown, D. D., Dawid, I. B.: Developmental Genetics. Ann. Rev. Genet. 3, 127–154 (1969).Google Scholar
  9. Brown, D. D., Gurdon, J.: Absence of ribosomal RNA synthesis in an anucleolate mutant of Xenopus laevis. Proc. nat. Acad. Sci. (Wash.) 51, 139–146 (1964).Google Scholar
  10. Brown, D. D., Littna, E.: RNA synthesis during the development of Xenopus laevis, the South African clawed toad. J. molec. Biol. 8, 669–687 (1964).Google Scholar
  11. Brown, D. D., Weber, C. S.: Gene linkage by RNA-DNA hybridization II. Arrangement of the redundant gene sequence for 28S and 18S ribosomal RNA. J. molec.Biol. 34, 681–697 (1968).Google Scholar
  12. Brown, D. D., Weber, G. C., Sinclair, J. H.: Ribosomal RNA and its genes during oogenesis and development. Carnegie Inst. Wash. Year Book 66, 580–589 (1967).Google Scholar
  13. Burgess, P. R., Travers, A. A., Dunn, J. J., Bautz, E. K. F.: Factors stimulating transcription by RNA polymerase. Nature (Lond.) 221, 43–46 (1969).Google Scholar
  14. Cave, M. D.: Localization of ribosomal DNA within oocytes of the house cricket, Acheta domesticus (Orthoptera: Gryllidae). J. Cell Biol. 55, 310–321 (1972).Google Scholar
  15. Cave, M. D., Allen, E. R.: Synthesis of nucleic acids associated with a DNA containing body of Acheta. Exp. Cell Res. 58, 201–212 (1969a).Google Scholar
  16. Cave, M. D., Allen, E. R.: Extrachromosomal DNA in early stages of oogenesis in Acheta domesticus. J. Cell Sci. 4, 593–609 (1969b).Google Scholar
  17. Collier, J. R.: Number of ribosomal cistrons in the marine mud snail, Ilyanassa obsoleta. Exp. Cell Res. 69, 181–184 (1971).Google Scholar
  18. Dawid, I., Brown, D.: The mitochondrial and ribosomal DNA components of oocytes of Urechis caupo. Develop. Biol. 22, 1–14 (1970).Google Scholar
  19. Dawid, I. B., Brown, D. D., Reeder, R. H.: Composition and structure of chromosomal and amplified ribosomal DNA's of Xenopus laevis. J. molec. Biol. 51, 341–360 (1970).Google Scholar
  20. Durand, M. C.: L'acide désoxyribonucléique des gamètes des Gryllus domesticus. C. R. Acad. Sci. (Paris) 241, 1340–1343 (1955).Google Scholar
  21. Gall, J. G.: Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.) 60, 553–560 (1968).Google Scholar
  22. Gall, J. G., Macgregor, H. C., Kidston, M. E.: Gene amplification in the oocytes of Dytiscid water beetles. Chromosoma (Berl.) 26, 169–187 (1969).Google Scholar
  23. Gall, J. G., Pardue, M. L.: Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. nat. Acad. Sci. (Wash.) 63, 378–383 (1969).Google Scholar
  24. Gillespie, D.: The formation and detection of DNA-RNA hybrids. In: Methods in enzymology, vol. XII B (L. Grossman and K. Moldave, eds.), p. 641–668. New York: Academic Press 1968.Google Scholar
  25. Hansen-Delkeskamp, E.: Satelliten-desoxyribonucleinsäure in Gonaden und somatischen Gewebe von Acheta domestica. L. Z. Naturforsch. 246, 1331–1335 (1969).Google Scholar
  26. Heinonen, L., Halkka, O.: Early stages of oogenesis and metabolic DNA in oocytes of the house cricket, Acheta domesticus (L.) Ann. Med. exp. Fenn. 45, 101–109 (1967).Google Scholar
  27. Ifft, J. B., Voet, D. H., Vinograd, J.: Determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge. J. phys. Chem. 65, 1138–1145 (1961).Google Scholar
  28. Kunz, W.: Lampbürstenchromosomen und multiple Nukleolen bei Orthopteren. Chromosoma (Berl.) 21, 446–462 (1967).Google Scholar
  29. Kunz, W.: Die Entstehung multipler Oocytenukleolen aus akzessorischen DNA Körpern bei Gryllus domesticus. Chromosoma (Berl.) 26, 41–75 (1969).Google Scholar
  30. Lima-de-Faria, A., Birnstiel, M. L., Jaworska, H.: Amplification of ribosomal cistrons in heterochromatin of Acheta. Genetics 61, Suppl., 145–159 (1969).Google Scholar
  31. Lima-de-Faria, A., Nilsson, B., Cave, D., Puga, A., Jaworska, H.: Tritium labeling and cytochemistry of extra DNA in Acheta. Chromosoma (Berl.) 25, 1–20 (1968).Google Scholar
  32. Mandel, M., Schildkraut, C., Marmur, J.: Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. In: Methods of enzymology, vol. XII B (L. Grossman and K. Moldave, editors), p. 184–195. New York: Academic Press 1968.Google Scholar
  33. Miller, O., Beatty, B.: Visualization of nucleolar genes. Science 164, 955–957 (1969).Google Scholar
  34. Pardue, M. L., Gerbi, S., Eckhardt, R., Gall, J.: Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma (Berl.) 29, 268–290 (1970).Google Scholar
  35. Perkowska, E., Macgregor, H. C., Birnstiel, M. L.: Gene amplification in the oocyte nucleus of mutant and wild-type Xenopus laevis. Nature (Lond.) 217, 649–650 (1968).Google Scholar
  36. Reeder, R. H., Brown, D. D.: Transcription of the ribosomal genes of an amphibian by the RNA polymerase of a bacterium. J. molec. Biol. 51, 361–377 (1970).Google Scholar
  37. Ritossa, F. M., Atwood, K. C., Lindsley, D. L., Spiegelman, S.: On the chromosomal distribution of DNA complementary to ribosomal and soluble RNA. Nat. Cancer Inst. Monogr. 23, 449–472 (1966).Google Scholar
  38. Urbani, E.: Cytochemical and ultrastructural studies of oogenesis in the Dytiscidae. Monit. zool. ital. (N. S.) 3, 55–87 (1969).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • M. Donald Cave
    • 1
    • 2
  1. 1.Department of Anatomy and Cell BiologyUniversity of Pittsburgh, School of MedicinePittsburgh
  2. 2.Department of AnatomyUniversity of Arkansas Medical CenterLittle Rock

Personalised recommendations