Current Genetics

, Volume 26, Issue 1, pp 79–86 | Cite as

Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa

  • Yi-Hong Zhou
  • Mark A. Ragan
Original Articles


The single-copy nuclear gene (GapA), encoding the plastid-localized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of the marine red alga Gracilaria verrucosa, has been cloned and sequenced. The GapA transcriptional initiation site was located 49 bp upstream of the start codon, and a putative TATA box was found 54 bp farther upstream. A spliceosomal intron was identified in the transit-peptide-encoding region in a position very similar to intron 1 of GapA and GapB of higher plants; no introns occur in the region encoding the mature protein. These observations provisionally suggest that both red algae and higher plants descend from a single ancestral photosynthetic eukaryote, i.e. that a single endosymbiotic event gave rise to red algal and higher-plant plastids.

Key words

Glyceraldehyde-3-phosphate dehydrogenase gene Gracilaria verrucosa Endosymbiotic origin of plastids Molecular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26: 181–186Google Scholar
  2. Bird CJ, Murphy CA, Rice EL, Gutell RR, Ragan MA (1991) Towards an rRNA gene phylogeny of the red algae. J Phycol 27 [suppl]: 9Google Scholar
  3. Branlant C, Oster T, Branlant G (1989) Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coli. Gene 75: 145–155Google Scholar
  4. Branlant G, Branlant CH (1985) Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 150: 61–66Google Scholar
  5. Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26: 320–328Google Scholar
  6. Brinkmann H, Cerff R, Salomon M, Soll J (1989) Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13: 81–94Google Scholar
  7. Brown JWS, Feix G, Frendewey D (1986) Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J 5: 2749–2758Google Scholar
  8. Cavalier-Smith T (1987) Intron phylogeny: a new hypothesis. Ann NY Acad Sci 503: 55–71Google Scholar
  9. Cerff R (1982) Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelmann M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, Amsterdam, pp 683–694Google Scholar
  10. Cerff R, Kloppstech K (1982) Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79: 7624–7628Google Scholar
  11. Conway T, Sewell GW, Ingram LO (1987) Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter regions. J Bacteriol 169: 5653–5662Google Scholar
  12. Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic proteincoding genes. Science 209: 1406–1414Google Scholar
  13. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881–10890Google Scholar
  14. Craik CS, Rutter WJ, Fletterick R (1983) Splice junctions: association with variation in protein structure. Science 220: 1125–1129Google Scholar
  15. Crane PR, Donoghue MJ, Doyle JA, Friis EM (1989) Angiosperm origins. Nature 342: 131Google Scholar
  16. Dayhoff MO, Schwartz RM, Orcutt BC (1979) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. Natl Biomed Res Fdn, Silver Spring Md. pp 345–352Google Scholar
  17. Dibb NJ, Newman AJ (1989) Evidence that introns arose at protosplice sites. EMBO J 8: 2015–2021Google Scholar
  18. Doolittle RF (1987) Of URFs and ORFs. A primer on how to analyze derived amino-acid sequences. University Science Books, Mill Valley, CaliforniaGoogle Scholar
  19. Doolittle RF, Feng DF, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31: 383–388Google Scholar
  20. Douglas S (1993) Chloroplast origins and evolution. In: Bryant DA (ed) The molecular biology of the cyanobacteria. Kluwer, Dordrecht (in press)Google Scholar
  21. Douglas SE, Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267–273Google Scholar
  22. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogeneticallydistinct unicellular eukaryotes. Nature 350: 148–151Google Scholar
  23. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111–116Google Scholar
  24. Duion B, Colleaux L, Jacquier A, Michel F, Monteilhet C (1986) Mitochondrial introns as mobile genetic elements: the role of intron-ncoded proteins. In: Wickner RB (ed) Extrachromosomal elements in lower eukaryotes. Plenum Press, New York, pp 5–27Google Scholar
  25. Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778Google Scholar
  26. Felsenstein J (1989) PHYLIP — phylogeny inference package (version 3.2). Cladistics 5: 164–166Google Scholar
  27. Finchant GA (1992) Constraints acting on the exon positions of the splice-site sequences and local amino-acid composition of the protein. Hum Mol Genet 1: 259–267Google Scholar
  28. Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algne. Can J Bot 56: 2883–2889Google Scholar
  29. Gil A, Proudfoot NJ (1987) Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit β-globin mRNA 3′ end formation. Cell 49: 399–406Google Scholar
  30. Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–357Google Scholar
  31. Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven. Microbiol Rev 46: 1–42Google Scholar
  32. Hahn S, Hoar ET, Gurennte L (1985) Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 82: 8562–8566Google Scholar
  33. Harris JI, Waters M (1976) Glyceraldehyde-3-phosphate dehydrogenase. In: Boyer PD (ed) The enzymes, 3rd edn, vol 13. Academic Press, New York, pp 1–49Google Scholar
  34. Heijne G von, Nishikawa K (1991) Chloroplast transit-peptides. The perfect random coil? FEBS Lett 278: 1–3Google Scholar
  35. Heijne G von, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545Google Scholar
  36. Hendriks L, De Baere R, Van der Peer Y, Neefs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 32: 167–177Google Scholar
  37. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8: 189–191Google Scholar
  38. Hultmark D, Klemenz R, Gehring WJ (1986) Translational and transcriptional control elements in the untranslated leader of the heatshock gene hsp22, Cell 44: 429–438Google Scholar
  39. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359Google Scholar
  40. Keegstra K, Olsen LJ, Theg SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40: 471–501Google Scholar
  41. Lefort-Tran M (1981) The triple layered organization of the Euglena chloroplast envelope (significance and function). Ber Dt Bot Ges 94: 463–476Google Scholar
  42. Lewin RA, Cheng L (1989) Prochloron, a microbial enigma. Chapman and Hall, New YorkGoogle Scholar
  43. Li W-H, Gouy M, Wolfe KH, Sharp PM (1989) Angiosperm origins. Nature 342: 131–132Google Scholar
  44. Liaud M-F, Zhang DX, Cerff R (1990) Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87: 8918–8922Google Scholar
  45. Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AWD (1992 a) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34: 153–162Google Scholar
  46. Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD (1992 b) Controversy on chloroplast origins. FEBS Lett 301: 127–131Google Scholar
  47. Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159: 323–331Google Scholar
  48. Martin W, Gierl A, Saedler H (1989 a) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48Google Scholar
  49. Martin W, Gierl A, Saedler H (1989 b) Angiosperm origins (reply to Crane et al. and to Li et al.). Nature 342: 132Google Scholar
  50. Martin W, Brinkmann H, Savona C, Cerff R (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90: 8692–8696Google Scholar
  51. Martinez P, Martin W, Cerff R (1989) Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208: 551–565Google Scholar
  52. Mereschowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25: 593–604, 689–691Google Scholar
  53. Mereschowsky C (1910) Theorie der zwei Plamaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30: 278–288, 289–303, 321–347, 354–367Google Scholar
  54. Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. BioSystems 28: 75–90Google Scholar
  55. Nierzwicki-Bauer SA, Curtis SE, Haselkorn R (1984) Cotranscription of genes encoding the small and large subunits of ribulose-1,5-hisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 81: 5961–5965Google Scholar
  56. Palmer JD (1993) A genetic rainbow of plastids. Nature 364: 762–763Google Scholar
  57. Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Lett 214: 1–7Google Scholar
  58. Quigley F, Martin WF, Cerff R (1988) Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676Google Scholar
  59. Ragan MA, Lee AR III (1992) Making phylogenetic sense of biochemical and morphological diversity among the protists. In: Dudley EC (ed) The unity of evolutionary biology. Dioscorides Press, Portland vol I, pp 432–441Google Scholar
  60. Ragan MA, Bird CJ, Rice EL, Gutell RR, Murphy CA, Singh RK (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci USA 91: in press.Google Scholar
  61. Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169: 641–646Google Scholar
  62. Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alpa Porphyra purpurea. Plant Cell 5: 465–475Google Scholar
  63. Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459Google Scholar
  64. Sagan L (1967) On the origin of mitosing cell. J Theor Biol 14: 225–274Google Scholar
  65. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  66. Scherer S, Davis RW (1980) Recombination of dispersed repeated DNA sequences in yeast. Science 209: 1380–1384Google Scholar
  67. Schiff JA, Epstein HT (1965) The continuity of the chloroplast in Euglena. In: Locke M (ed) Reproduction: molecular, subcellular and cellular. Academic Press, New York, pp 131–189Google Scholar
  68. Schimper AFW (1883) Über die Entwickelung der Chlorophyllkörner und der Farbkörper. Bot Ztg 41: 105–114Google Scholar
  69. Shih M-C, Lazar G, Goodman HM (1986) Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell 47: 73–80Google Scholar
  70. Smith TL (1989) Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 86: 7063–7066Google Scholar
  71. Taylor FJR (1974) Implications and extensions of the serial endosymbiosis theory for the origin of eukaryotes. Taxon 23: 229–258Google Scholar
  72. Wistow G (1993) Protein structure and introns. Nature 364: 107–108Google Scholar
  73. Zhou Y-H, Ragan MA (1993) cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23: 483–489Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Yi-Hong Zhou
    • 1
  • Mark A. Ragan
    • 1
  1. 1.Institute for Marine BiosciencesNational Research Council of CanadaHalifaxCanada

Personalised recommendations