Current Genetics

, Volume 26, Issue 1, pp 38–44 | Cite as

Multiple-copy integration in the yeast Yarrowia lipolytica

  • Marie-Thérèse Le Dall
  • Jean-Marc Nicaud
  • Claude Gaillardin
Original Articles


Using an EcoRI-BglII fragment of the G unit of the rDNA of Y. lipolytica and a set of 11 deletions in the URA3 promoter, we have constructed several plasmids to test gene amplification in the rDNA. These plasmids contain the rDNA fragment for integration, defective versions of the URA3 gene, the XPR2 gene encoding alkaline extracellular protease (AEP) as a reporter gene, and part of the pBR322 plasmid for selection and replication in E. coli. Among these plasmids, one corresponds to a deletion which allows multiple integration into the rDNA (plasmid pINA773). Two other plasmids (pINA767 and pINA772) give multiple integration only with a mutated URA3 gene. Transformants carrying these three plasmids were tested for copy number, stability, chromosomal localization and AEP secretion. Transformants containing plasmids pINA767, 772 and 773 displayed an average copy number of 5, 12 and 25–60 copies respectively of the plasmid, as estimated by PCR and DNA hybridization. Integrations occurred in only one chromosome except for transformants containing 60 copies where copies were observed at least in two different chromosomes. Multiple integrations were found both as tandem repeats and as dispersed copies. Plasmid copy number was stable in both minimum and rich media, for strains containing less than ten copies per cells. However, for higher copy number, multiple integrations were stable only when AEP synthesis was not induced, while in inducing medium stability of the multiple integrations was dramatically affected.

Key words

Yarrowia lipolytica Gene amplification rDNA Secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergkamp RJM, Kool IM, Geerse RH, Planta RJ (1992) Curr Genet 21:365–370Google Scholar
  2. Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) Curr Genet 16:95–98Google Scholar
  3. Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, De Zeuuw JR (1985) Curr Genet 10:39–48Google Scholar
  4. Davidow LS, Kaczmarek FS, De Zeeuw JR, Conlon SW, Lauth MR, Pereira DA, Franke AE (1987) Curr Genet 11:377–388Google Scholar
  5. Erhardt E, Hollenbeirg CP (1983) J Bacteriol 156:625–635Google Scholar
  6. Fabre E, Nicaud JM, Lopez MC, Gaillardin C (1991) J Biol Chem 266:3782–3790Google Scholar
  7. Fabre E, Tharaud C, Gaillardin C (1992) J Biol Chem 267:15049–15055Google Scholar
  8. Fournier C, Gaillardin C, Persuy MA, Klootwijk J, van Heerikhuizen H (1986) Gene 42:273–282Google Scholar
  9. Fournier P, Guyaneux L, Chasles M, Gaillardin C (1991) Yeast 7:25–36Google Scholar
  10. Fournier P, Abbas H, Chasles M, Kudla B, Ogrydziak DM, Yaver D, Xuan JW, Peito A, Ribet AM, Feynerol C, He F, Gaillardin C (1993) Proc Natl Acad Sci USA 90:4912–4916Google Scholar
  11. Franke AE, Kaczmarek FS, Eisenhard ME, Geoghegan KF, Danley DE, De Zeuuw JR, O'Donnell MM, Gollaher MG, Davidow LS (1988) Dev Ind Microbiol 29:43–57Google Scholar
  12. Gaillardin C, Ribet AM (1987) Curr Genet 11:369–375Google Scholar
  13. Gaillardin C, Ribet AM, Heslot H (1985) Curr Genet 10:49–58Google Scholar
  14. Gussow D, Clackson T (1989) Nucleic Acids Res 17:4000Google Scholar
  15. Heslot H (1990) Adv. Biochem. Eng./Biotech 43:43–73Google Scholar
  16. Kingsman SM, Kingsman AJ, Mellor J (1987) Trends Biochem Sci 5:53–57Google Scholar
  17. Lopes TS, Klootwijk J, Veenstra AE, Van der Aar PC, van Heerikhuizen H, Raué HA, Planta RJ (1989) Gene 79:199–206Google Scholar
  18. Lopes TS, Hakkaart GJ, Koerts BL, Raué HA, Planta RJ (1991) Gene 105:83–90Google Scholar
  19. Matoba S, Fukuyama J, Wing RA, Ogrydziak DM (1988) Mol Cell Biol. 8:4904–4916Google Scholar
  20. Naumova E, Naumov G, Fournier P, Nguyen HV, Gaillardin C (1993) Curr. Genet 23:450–454Google Scholar
  21. Nicaud JM, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) J Biotechnol 12:285–298Google Scholar
  22. Nicaud JM, Fournier P, La Bonnardière C, Chasles M, Gaillardin C (1991) J Biotechnol 19:259–270Google Scholar
  23. Ogrydziak DM, Mortimer RK (1977) Genetics 87:621–632Google Scholar
  24. Ogrydziak DM, Scharf SJ (1982) J Gen Microbiol 128:1225–1234Google Scholar
  25. Romanos M, Scorer C, Clarc J (1992) Yeast 8:423–488Google Scholar
  26. Sakai A, Ozawa F, Higashizaki T, Shimizu Y, Hishinuma F (1991) Bio/Technology 9:1382–1385Google Scholar
  27. Sanger FS, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5468Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  29. Sherman F, Fink GR, Hicks J (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Tharaud C, Ribet AM, Costes C, Gaillardin C (1992) Gene 121:111–119Google Scholar
  31. Treton BY, Le Dall MT, Gaillardin C (1992) Curr Genet 22:345–355Google Scholar
  32. Van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985), Gene 42:273–282Google Scholar
  33. Xuan JW, Fournier P, Gaillardin C (1988) Curr Genet 14:15–21Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Marie-Thérèse Le Dall
    • 1
  • Jean-Marc Nicaud
    • 1
  • Claude Gaillardin
    • 1
  1. 1.Centre de Biotechnologie Agro-Industrielle, Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRSInstitut National AgronomiqueThiverval-GrignonFrance

Personalised recommendations