Current Genetics

, Volume 19, Issue 2, pp 129–137

A new senescence-inducing mitochondrial linear plasmid in field-isolated Neurospora crassa strains from India

  • Deborah A. Court
  • Anthony J. F. Griffiths
  • Steven R. Kraus
  • Peter J. Russell
  • Helmut Bertrand
Original Articles

Summary

Several field-collected strains of Neurospora crassa from the vicinity or Aarey, Bombay, India, are prone to precocious senescence and death. Analysis of one strain, Aarely-1e, demonstrated that the genetic determinants for the predisposition to senescence are maternally inherited. The senescence-prone strains contain a 7-kb, linear, mitochondrial DNA plasmid, maranhar, which is not present in long-lived isolates from the same geographical location. The maranhar plasmid has inverted terminal repeats with protein covalently bound at the 5′ termini. Molecular hybridization experiments have demonstrated no substantial DNA sequence homology between the plasmid and the normal mitochondrial (mtDNA) and nuclear genomes of long-lived strains of N. crassa. Integrated maranhar sequences were detected in the mtDNAs of two cultures derived from Aarey-1e, and mtDNAs with the insertion sequences accumulated during subculturing. Nucleotide sequence analysis of cloned fragments of the two insertion sequences demonstrates that that they are flanked by long inverted repeats of mtDNA. The senescence syndrome of the maranhar strains, and the mode of integration of the plasmid, are reminiscent of those seen in the kalilo strains of N. intermedia. Nonetheless, there is no detectable nucleotide sequence homology between the maranhar and kalilo plasmids.

Key words

Senescence Plasmid Neurospora Mitochondria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Kelly RL, Lambowitz AM (1986) Cell 47:505–516Google Scholar
  2. Bertrand H (1983) In: Regelson W, Sinex FM (eds) Intervention in the aging process, Part B. Basic research and preclinical screening. Alan R. Liss, New York, pp 233–251Google Scholar
  3. Bertrand H (1986) In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes, Basic life sciences, vol. 40. Plenum Press, New York London, pp 93–103Google Scholar
  4. Bertrand H, Collins RA, Stohl LL, Goewert RR, Lambowitz AM (1980) Proc Natl Acad Sci USA 77:6032–6036Google Scholar
  5. Bertrand H, Chan BS-S, Griffiths AJF (1985) Cell 41:877–884Google Scholar
  6. Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) Cell 47:829–837Google Scholar
  7. Böckelmann B, Esser K (1986) Curr Genet 10:803–810Google Scholar
  8. Collins RA, Stohl LL, Cole MD, Lambowitz AM (1981) Cell 24:443–452Google Scholar
  9. Davis RH, de Serres FM (1970) Methods Enzymol 17A:79–84Google Scholar
  10. Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655Google Scholar
  11. deVries H, de Jonge JC, van't Sant P, Agsteribbe E, Arnberg A (1981) Curr Genet 3:205–211Google Scholar
  12. Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Springer, Berlin Heidelber New YorkGoogle Scholar
  13. Griffiths AJF, Bertrand H (1984) Curr Genet 8:387–398Google Scholar
  14. Griffiths AJF, Kraus S, Bertrand H (1986) Can J Genet Cytol 28:459–467Google Scholar
  15. Gross SR, Hsieh T-S, Levine P (1984) Cell 38:233–239Google Scholar
  16. Kück U (1989) Exp Mycol 13:111–120Google Scholar
  17. Lambowitz AM (1979) Methods Enzymol 59:421–433Google Scholar
  18. Lazarus CM, Earl AJ, Turner G, Küntzel H (1980) Eur J Biochem 106:633–641Google Scholar
  19. Lazarus CM, Küntzel H (1981) Curr Genet 4:99–107Google Scholar
  20. Lizardi PM, Luck DJL (1971) Nature New Biol 229:140–142Google Scholar
  21. Lonsdale DM, Thompson RD, Hodge TP (1981) Nucleic Acids Res 9:3657–3668Google Scholar
  22. Meinhardt F, Kempken F, Kämper J, Esser K (1990) Curr Genet 17:89–95Google Scholar
  23. Meyer RJ, Hintz WA, Mohan M, Robison M, Anderson JB, Horgen PA (1988) Genome 30:710–716Google Scholar
  24. Myers CJ, Griffiths AJF, Bertrand H (1989) Mol Gen Genet 220:112–120Google Scholar
  25. Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) Cell 38:441–453Google Scholar
  26. Nelson MA, Macino G (1987) Mol Gen Genet 206:318–325Google Scholar
  27. Pring DR, Levings III CS, Hu WWL, Timothy DH (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  28. Rieck A, Griffiths AJF, Bertrand H (1982) Can J Genet Cytol 24:741–759Google Scholar
  29. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  31. Seidel-Rogol B, King J, Bertrand H (1989) Mol Cell Biol 9:4259–4264Google Scholar
  32. Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Nature 310:292–296Google Scholar
  33. Taylor JW, Smolich BD (1985) Curr Genet 9:597–603Google Scholar
  34. Tudzynski P, Esser K (1986) Curr Genet 10:463–467Google Scholar
  35. Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) Curr Genet 17:195–201Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Deborah A. Court
    • 1
  • Anthony J. F. Griffiths
    • 2
  • Steven R. Kraus
    • 2
  • Peter J. Russell
    • 3
  • Helmut Bertrand
    • 1
  1. 1.Department of MicrobiologyUniversity of GuelphGuelphCanada
  2. 2.Department of BotanyUniversity of British ColumbiaVancouverCanada
  3. 3.Department of BiologyReed CollegePortlandUSA

Personalised recommendations