Current Genetics

, Volume 20, Issue 3, pp 195–198

Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals

  • G. D. Clark-Walker
Original Articles

Summary

Base substitutions have been compared in two mitochondrial and two nuclear genes from three yeasts and three mammals. In yeasts, the two mitochondrial genes, cytochrome oxidase subunit 2 (COX2) and apocytochrome b (CYB), have fewer changes on a percentage basis than the nuclear-encoded cytochrome c (CYC) gene. By contrast, in mammals, the same mitochondrial genes have more mutations than CYC on a percentage basis. Sequence comparisons of the nuclear small-subunit ribosomal RNA (nSSU) gene shows that there are more substitutions per unit length in the three yeasts than in the three mammals. This result suggests that although the yeasts are more distantly related than the mammals, their mitochondrial genes have accumulated fewer changes.

Key words

Cytochrome c genes Candida glabrata Kluyveromyces lactis Transition to transversion ratios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–464Google Scholar
  2. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton D (1981) Cell 26:167–180Google Scholar
  3. Brown WM, George M Jr, Wilson AC (1979) Proc Natl Acad Sci USA 76:1967–1971Google Scholar
  4. Brown WM, Prager EM, Wang A, Wilson AC (1982) J Mol Evol 18:225–239Google Scholar
  5. Brunner A, Coria R (1989) Yeast 5:209–218Google Scholar
  6. Cann RL Brown WM, Wilson AC (1984) Genetics 106:479–499Google Scholar
  7. Capaldi RA, Malastesta F, Darley-Usmar VM (1983) Biochim Biophys Acta 726:135–148Google Scholar
  8. Cedergren R, Gray MW, Abel Y, Sankoff D (1988) J Mol Evol 28:98–112Google Scholar
  9. Clark-Walker GD (1989) Proc Natl Acad Sci USA 86:8847–8851Google Scholar
  10. Clark-Walker GD, McArthur CR, Sriprakash KS (1985) EMBO J 4:465–473Google Scholar
  11. Coruzzi G, Tzagoloff A (1979) J Biol Chem 254:9324–9330Google Scholar
  12. Dams E, Hendriks L, Van de Peer Y, Neefs J-M, Smits G, Vandenbempt I, De Wachter R (1988) Nucleic Acids REs 16:r87-r172Google Scholar
  13. Evans MJ, Scarpulla RC (1988) Proc Natl Acad Sci USA 85:9625–9629Google Scholar
  14. Fournier A, Fleer R, Yeh P, Mayaux J-F (1990) Nucleic Acids Res 18:365Google Scholar
  15. Gadaleta G, Pepe G, DeCandia G, Quagliariello C, Sbisa E, Saccone C (1989) J Mol Evol 28:497–516Google Scholar
  16. Gray MW (1989) Annu Rev Cell Biol 5:25–50Google Scholar
  17. Hall J, Moubarak A, O'Brien P, Pan LP, Cho I, Millet F (1988) J Biol Chem 263:8142–8149Google Scholar
  18. Hampsey DM, Das G, Sherman F (1986) J Biol Chem 261:3259–3271Google Scholar
  19. Hardy CM, Clark-Walker GD (1990) Yeast 6:403–410Google Scholar
  20. Hardy CM, Galeotti CL, Clark-Walker GD (1989) Curr Genet 16:419–427Google Scholar
  21. Kadenbach B, Kuhn-Nentwig L, Guge U (1987) Curr Topics Bioenerg 15:113–161Google Scholar
  22. Limbach KJ, Wu R (1985) Nucleic Acids Res 13:617–630Google Scholar
  23. Maleszka R, Clark-Walker GD (1990) Nucleic Acids Res 18:1889Google Scholar
  24. Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayshi M, Koike K (1982) J Mol Evol 19:28–35Google Scholar
  25. Montgomery DL, Leung DW, Smith M, Shalit P, Faye G, Hall BD (1980) Proc Natl Acad Sci USA 77:541–545Google Scholar
  26. Morin GB, Cech TR (1988) Nucleic Acids Res 16:327–346Google Scholar
  27. Nobrega FG, Tzagoloff A (1980) J Biol Chem 255:9828–9837Google Scholar
  28. Palmer JD, Herbon LA (1988) J Mol Evol 28:87–97Google Scholar
  29. Ragnini A, Fukuhara H (1988) Nucleic Acids Res 17:8433–8442Google Scholar
  30. Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA (1980) Nucleic Acids Res 8:5779–5794Google Scholar
  31. Saliola M, Shuster JR, Falcone C (1990) Yeast 6:193–204Google Scholar
  32. Scarpulla RC, Agne GM, Wu R (1981) J Biol Chem 256:6480–6486Google Scholar
  33. Shuster J, Moyer D, Irvine B (1987) Nucleic Acids Res 15:8573Google Scholar
  34. Smith M, Leung DW, Gillam S, Astell CR, Montgomery DL, Hall BD (1979) Cell 16:753–761Google Scholar
  35. Stark MJR, Milner JS (1989) Yeast 5:35–50Google Scholar
  36. Stiles JI, Friedman LR, Helms SC, Consaul S, Sherman F (1981) Mol Biol 148:331–346Google Scholar
  37. Tzagoloff A, Myers AM (1986) Annu Rev Biochem 55:249–285Google Scholar
  38. Wallace DC, Ye J, Neckelmann SN, Singh G, Webster KA, Greenberg BD (1987) Curr Genet 12:81–90Google Scholar
  39. Wolf K (1987) In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. SGM special publication 22. IRL Press, Oxford, pp 41–62Google Scholar
  40. Wolfe KH, Li WH, Sharp PM (1987) Proc Natl Acad Sci USA 84:9054–9058Google Scholar
  41. Wong OC, Clark-Walker GD (1990) Nucleic Acids Res 18:1888Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. D. Clark-Walker
    • 1
  1. 1.Molecular and Population Genetics Group, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations