Advertisement

Chromosoma

, Volume 38, Issue 2, pp 185–236 | Cite as

Evolution of karyotypes in snakes

  • L. Singh
Article

Abstract

Karyotype analysis and morphometric measurement of the chromosomes of 17 species of snakes have been done. Chromosomes of different species so far worked out in each family have been compared using quantitative methods to derive chromosomal affinities between species of different taxonomic categories. The following conclusions have been drawn: (i) It is suggested that the retention of Xenopeltidae as a separate family is unnecessary and the only species Xenopeltis unicolor referred to in that group should be included in the family Boidae. (ii) The subfamilies, Boinae and Pythoninae cannot be distinguished chromosomally. (iii) On the basis of chromosomal similarities, the cytologically known species of Colubridae. have been put into 13 different groupings which do not always correspond to the views of the present day colubrid taxonomists. (iv) In Hydrophiidae, speciation seems to have occurred through changes in the 4th pair of autosomes and sex chromosomes in general and the W chromosome in particular. Evidences are presented to show that fission and inversion have played an important role in bringing about the structural rearrangements in this group. (v) Family Viperidae according to taxonomists is divided into two subfamilies. Both the subfamilies are chromosomally very similar.

Keywords

Developmental Biology Quantitative Method Taxonomic Category Structural Rearrangement Karyotype Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi, F. E., Hsu, T. C.: Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971).Google Scholar
  2. Atkin, N. B., Mattinson, G., Beçak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles and birds. Chromosoma (Berl.) 17, 1–10 (1965).Google Scholar
  3. Beçak, W.: Constituicao cromossomica e mecanismo de determinacao do sexo em ofidios sulamericanos. I. Aspectos cariotipicos. Mem. Inst. Butantan 32, 37–78 (1965).Google Scholar
  4. Beçak, W.: Constituicao cromossomica e mecanismo de determinacao do sexo em ofidios sulamericanos. II. Chromossomes sexuais e evolucao do cariotipo. Mem. Inst. Butantan. Simp. int. 33, 775–798 (1966).Google Scholar
  5. Beçak, W.: Karyotypes, sex chromosomes, and chromosomal evolution in snakes, p. 53–96. In: Venomous animals and their venoms (Wolfgang Bucherl, ed.), vol. 1. New York-London: Academic Press 1968.Google Scholar
  6. Beçak, W., Beçak, M. L.: Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics 8, 247–262 (1969).Google Scholar
  7. Beçak, W., Beçak, M. L., Nazareth, H. R. S.: Estudo de cromossomos de ofidios em culturas temporarias de leucocitos. Ciencia cultura 14, 210 (1962a).Google Scholar
  8. Beçak, W., Beçak, M. L., Nazareth, H. R. S.: Karyotypic studies of two species of south American snakes (Boa constrictor amarali and Bothrops jararaca). Cytogenetics 1, 305–313 (1962b).Google Scholar
  9. Beçak, W., Beçak, M. L., Nazareth, H. R. S.: Chromosomes of snakes in short term cultures of blood leucocytes. Amer. Naturalist 97, 253–256 (1963a).Google Scholar
  10. Beçak, W., Beçak, M. L., Nazareth, H. R. S.: Karyotypic studies of south American snakes. Proc. int. Cong. Genet. (The Hague) 1, 278 (1963b).Google Scholar
  11. Beçak, W., Beçak, M. L., Nazareth, H. R. S.: Evolution and sex chromosomes in serpentes. Mem. Inst. Butantan, Simp. int. 33, 151–152 (1966).Google Scholar
  12. Beçak, W., Beçak, M. L., Nazareth, H. R. S., Ohno, S.: Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma (Berl.) 15, 606–617 (1964).Google Scholar
  13. Bhatnagar, A. N.: Studies on the structure and behaviour of chromosomes of Oligodon arnensis Shaw (Colubridae: Ophidia). Cytologia (Tokyo) 24, 459–465 (1959).Google Scholar
  14. Bhatnagar, A. N.: Studies on the structure and behaviour of chromosomes of two species of colubrid snakes (Colubridae: Ophidia). Caryologia (Firenze) 12, 349–361 (1960a).Google Scholar
  15. Bhatnagar, A. N.: Chromosomes of Bungarus caeruleus Schneider (Elapidae: Ophidia). Cytologia (Tokyo) 25, 173–176 (1960b).Google Scholar
  16. Bhatnagar, A. N.: Chromosome cytology of a snake Lycodon aulicus L. (Colubridae: Ophidia). Caryologia (Firenze) 14, 35–42 (1961).Google Scholar
  17. Bianchi, N. O., Lima-de-Faria, A., Jaworska, H.: A technique for removing silver grains and gelatin from tritium autoradiographs of human chromosomes. Hereditas (Lund) 51, 207–211 (1964).Google Scholar
  18. Bonaparte, C. L.: Specchio generale dei sistemi erpetologico ed anfibiologico. Atti sci. ital. (Milano) 6, 376–378 (1845).Google Scholar
  19. Brink, J. H. van: L'expression morphologique de la digamétie chez les Sauropsides et les Monotrèmes. Chromosoma (Berl.) 10, 1–72 (1959).Google Scholar
  20. Carson, H. L., Clayton, F., Stalker, H. D.: Karyotypic stability and speciation in Hawaiian Drosophila. Proc. nat. Acad. Sci. (Wash.) 57, 1280–1285 (1967).Google Scholar
  21. Chu, E. H. Y., Bender, M. A.: Cytogenetics and evolution of Primates. Ann. N. Y. Acad. Sci. 102, 253–266 (1962).Google Scholar
  22. Cole, C. J., Dowling, H. G.: Chromosomes of the sunbeam snake. Xenopeltis unicolor Reinwardt (Reptilia: Xenopeltidae). Herpetol. Rev. 2, 35–36 (1970).Google Scholar
  23. Drets, M. E., Shaw, M. W.: Specific banding pattern of human chromosomes. Proc. nat. Acad. Sci. (Wash.) 68, 2073–2077 (1971).Google Scholar
  24. Dutt, K.: Karyotype study of a fresh water snake Cerberus rhynohops (Abstr.). Proc. int. Symp. Anim. Venoms. Inst. Butantan, Sao Paulo, p. 15–16 (1966).Google Scholar
  25. Dutt, K.: Chromosome variation in two populations of Xenochrophis piscator Schn. from north and south India (Serpentes, Colubridae). Cytologia (Tokyo) 35, 456–464 (1970).Google Scholar
  26. Fischman, H. K., Mitra, J., Dowling, H.: Chromosome analyses of three members of the genus Elaphe (Serpentes). (Abstr.) Proc. Meet. Genet. Soc. Amer. (1968).Google Scholar
  27. Gropp, A.: Cytologic mechanisms of karyotype evolution in Insectivores. In: Comparative mammalian cytogenetics (K. Benirschke, ed.). Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  28. Hoge, A. R.: Nota sobre Xenopeltis unicolor Reinwardt 1827: Serpentes. Mem. Inst. Butantan 30, 31–33 (1964).Google Scholar
  29. Hsu, T. C., Arrighi, F. E.: Distribution of constitutive heterochromatin in Mammalian chromosomes. Chromosoma (Berl.) 34, 254–260 (1971).Google Scholar
  30. Itoh, M., Sasaki, M., Makino, S.: The chromosomes of some Japanese snakes with special regard to sexual dimorphism. Jap. J. Genet. 45, 121–128 (1970).Google Scholar
  31. Kobel, H. R.: Vergleich der Chromosomensätze von Vipera berus L. und Vipera aspis L. (Viperidae, Serpentes). Arch. Klaus-Stift. Vererb.-Forsch. 38, 68–75 (1963).Google Scholar
  32. Kobel, H. R.: Morphometrische Karyotypanalyse einiger Schlangenarten. Genetica ('s-Gravenhage) 38, 1–31 (1967).Google Scholar
  33. Levan, A., Fredga, K., Sandberg, A. A.: Nomenclature for centromeric position on chromosomes. Hereditas (Lund) 52, 201–220 (1964).Google Scholar
  34. Makino, S., Momma, E.: An idiogram study of the chromosomes in some species of reptiles. Cytologia (Tokyo) 15, 96–108 (1949).Google Scholar
  35. Matthey, R.: Les chromosomes de la Vipère (Vipera aspis). C. R. Soc. Phys. Genèv. 45 (1928).Google Scholar
  36. Matthey, R.: Chromosomes de Reptiles, Sauriens, Ophidiens, Cheloniens. L'évolution de la formule chromosomiale chez les Sauriens. Rev. suisse Zool. 38, 117–186 (1931).Google Scholar
  37. Matthey, R.: Cytogenetic mechanisms and speciation of mammals. Amer. Tissue Cult. Assoc. Meeting Miami, 1–11 (1966).Google Scholar
  38. Monroe, J. E.: Chromosomes of rattlesnakes. Herpetologica 17, 217–220 (1962).Google Scholar
  39. Nadler, C. F.: Chromosomes and systematics of American ground squirrels of the sub genus Spermophilus. J. Mammal. 47, 579–596 (1966).Google Scholar
  40. Nadler, C. F.: Chromosomal evolution in rodents. In: Comparative mammalian cytogenetics (K. Benirschke, ed.). Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  41. Nakamura, K.: Preliminary notes on reptilian chromosomes. I. The chromosomes of some snakes. Proc. imp. Acad. Tokyo 3 (1927).Google Scholar
  42. Nakamura, K.: On the chromosomes of a snake (Natrix tigrina). Mem. Coll. Sci. Kyoto imp. Univ. B 4, 1–8 (1928).Google Scholar
  43. Nakamura, K.: Studies on reptilian chromosomes. VI. Chromosomes of some snakes. Mem. Coll. Sci. Kyoto imp. Univ. B 10, 361–402 (1935).Google Scholar
  44. Olson, E. C.: Vertebrate paleozoology. New York-London-Sydney-Toronto: Wiley and Sons. Inc. 1971.Google Scholar
  45. Pope, C. H.: The reptile world. London: Routledge and Kegan Poul, Ltd. 1956.Google Scholar
  46. Ray-Chaudhuri, R., Sharma, T., Ray-Chaudhuri, S. P.: A comparative study of the chromosomes of birds. Chromosoma (Berl.) 26, 148–168 (1969).Google Scholar
  47. Ray-Chaudhuri, S. P., Singh, L.: DNA replication pattern in sex-chromosomes of snakes. Nucleus (Calcutta) (in press, 1972).Google Scholar
  48. Ray-Chaudhuri, S. P., Singh, L., Sharma, T.: Sexual dimorphism in somatic interphase nuclei of snakes. Cytogenetics 91, 410–423 (1970).Google Scholar
  49. Ray-Chaudhuri, S. P., Singh, L., Sharma, T.: Evolution of sex chromosomes and formation of W. chromatin in snakes. Chromosoma (Berl.) 33, 239–251 (1971).Google Scholar
  50. Romer, A. S.: Osteology of the reptiles. Chicago: Univ. Chicago Press 1956.Google Scholar
  51. Singh, L.: Multiple W chromosome in a sea snake, Enhydrina schistosa Daudin. Experientia (Basel) 28, 95–97 (1972).Google Scholar
  52. Singh, L., Sharma, T., Ray-Chaudhuri, S. P.: W chromosome in the Indian water snake (checkered keel back) Natrix piscator (Colubridae). Experientia (Bassl) 24, 79–80 (1968a).Google Scholar
  53. Singh, L., Sharma, T., Ray-Chaudhuri, S. P.: Chromosomes and the classification of snakes of the family Boidae. Cytogenetics 7, 161–168 (1968b).Google Scholar
  54. Singh, L., Sharma, T., Ray-Chaudhuri, S. P.: Chromosome numbers and sex-chromosomes in a few Indian species of amphibia and reptiles. Mammal. Chrom. Newsl. 11, 91–94 (1970a).Google Scholar
  55. Singh, L., Sharma, T., Ray-Chaudhuri, S. P.: Multiple sex-chromosomes in the common Indian krait, Bungarus caeruleus Schneider. Chromosoma (Berl.) 31, 386–391 (1970b).Google Scholar
  56. Smith, M. A.: Fauna of British India, vol. 3. London: Taylor and Francis 1943.Google Scholar
  57. Stimson, A. F.: Liste der rezenten Amphibien und Reptilien: Boidae (Boinae and Bolyerunae and Loxoceminae and Pythoninae). Tierreich 89 (1969).Google Scholar
  58. Thatcher, L. E.: Spermatogenesis of the garter snake. Science 56, 372 (1922).Google Scholar
  59. Underwood, G.: A contribution to the classification of snakes. Publ. British Mus. (Natur. Hist.) 653, X, 1–179 (1967).Google Scholar
  60. Wasserman, M.: Cytological studies of the repleta group of the genus Drosophila: V. The mulleri subgroup. Univ. Texas Publ. 6205, 85–117 (1962).Google Scholar
  61. Werner, Y. L.: Chromosomes of primitive snakes from Israel. Bull. Res. Coun. Israel B 8, 197–198 (1959).Google Scholar
  62. White, M. J. D.: Cytogenetics of speciation. J. Aust. ent. Soc. 9, 1–6 (1970).Google Scholar
  63. Wurster, D. H., Benirschke, K.: Comparative cytogenetic studies in the order Carnivora. Chromosoma (Berl.) 24, 336–382 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • L. Singh
    • 1
    • 2
  1. 1.Cytogenetics Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasi
  2. 2.Genetics Research Unit Department of ZoologyCalcutta UniversityCalcuttaIndia

Personalised recommendations