, Volume 98, Issue 1, pp 8–14 | Cite as

Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing

  • A. Gathmann
  • H.-J. Greiler
  • T. Tscharntke
Original Paper


Trap-nesting bees and wasps (Hymenoptera Aculeata) colonizing crop and fallow fields in an agricultural landscape were studied using 20 sown fields (pea, barley, rye, clover-grass mixtures, Phacelia tanacetifolia) and 20 fields with naturally developed vegetation (1- and 2-year old fields, both mown and unmown, and old meadows). Fourteen species of Apoidea, 4 of Sphecidae, 1 of Eumenidae and 4 of parasitoids were reared from reed nests exposed in these 40 fields of 10 field-types. Fields with naturally developed vegetation had twice as many species as sown fields, due to the distribution pattern of the 14 bee species, whereas the 9 predatory species (wasps and parasitoids) showed a rather uniform distribution. None of the trap-nesting bees were found in Phacelia fields, despite contrasting expectations of beekeepers. Old meadows showed a particularly high abundance and species richness, since only 10% of all traps were exposed, but 32% of all bee nests were sampled in old meadows, including 4 bee species that were not found elsewhere. Accordingly, species richness of fields with naturally developed vegetation showed a significant increase with age. Variability in Hymenoptera species numbers could be explained by corresponding differences in plant species numbers. The alternative hypothesis that field size or field connectivity influenced species richness was not supported. Habitats with great floral diversity appeared to offer better and richer food resources for the flower-visiting bees, whereas food availability apparently did not influence predatory wasps. The bees Osmia caerulescens and Megachile versicolor that had colonized early-successional fields took twice as long to provision cells as those that colonized late-successional meadows characterized by a greater plant species richness. In contrast, the eumenid wasp Ancistrocerus gazella took a similar period of time to provision cells in both field types. In addition, bee and wasp species of plant-species-poor fields were on average significantly larger than those of plant-species-rich fields. Thus, body size appeared to be a good predictor of colonization ability. Management by cutting greatly increased plant species richness in early-successional set-aside fields and thus doubled species richness of bees. Cutting of early-successional habitats can be expected to benefit insects and plants in general, whereas older grassland should show the greatest insect diversity when both mown and unmown parts are present.

Key words

Colonization Succession Body size Hymenoptera Aculeata Set-aside 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson DJ (1986) Ecological succession. In: Kikkawa J, Anderson DJ (eds) Community ecology. Blackwell, Oxford, pp 269–285Google Scholar
  2. Bauer M, Engels W (1991) Bienenweide auf stillgelegten Ackerflächen. Allg Disch Imker Ztg 4: 40–43Google Scholar
  3. Brechtel FM (1986) Die Stechimmenfauna des Bienwaldes und seiner Randbereiche (Südpfalz) unter besonderer Berücksichtigung der Ökologie kunstnestbewohnender Arten. Pollichia-Buch 9, Bad Dürkheim, pp 1–282Google Scholar
  4. Brown VK, Southwood TRE (1987) Secondary succession: patterns and strategies. In: Gray AJ, Crawley MI, Edwards DJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 315–338Google Scholar
  5. Clarke W (1992) Set-aside. British Crop Protection Council Monogr 50Google Scholar
  6. Corbet SA (1987) More bees make better crops. New Sci 115: 40–43Google Scholar
  7. Corbet SA, Williams IH, Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European community. Bee World 72: 47–59Google Scholar
  8. Danks HV (1971) Nest mortality factors in stem-nesting aculeate Hymenoptera. J Anim Ecol 40: 79–82Google Scholar
  9. Den Boer P (1990) The survival value of dispersal in terrestrial arthropods. Biol Conserv 54: 175–192Google Scholar
  10. Dorn M, Weber D (1988) Die Luzerne-Blattschneiderbiene. Ziemsen Wittenberg-Lutherstadt, pp 1–110Google Scholar
  11. Fussell M, Corbet SA (1992) Flower usage by bumble-bees: a basis for forage plant management J Appl Ecol 29: 451–465Google Scholar
  12. Gathmann A, Tscharntke T (1993) Bienen und Wespen in Nisthilfen auf eingesäten Flächen und selbstbegrünten Brachen (Hymenoptera Aculeata). Verh Ges Ökol 22: 53–56Google Scholar
  13. Greiler H-J (1994) Insektengesellschaften auf selbstbegrünten und eingesäten Ackerbrachen Agrarökologie. Paul Haupt, Bern (in press)Google Scholar
  14. Greiler H-J, Tscharntke T (1991) Artenreichtum von Pflanzen und Grasinsekten auf gemähten und ungemähten Rotationsbrachen. Verh Ges Ökol 20: 429–434Google Scholar
  15. Greiler H-J, Vidal S, Tscharntke T (1992) Abundance and species richness of Chalcidoidea (Hymenoptera) in fallows and cultivated fields (malaise-trap samples). Proc 4th Eur Entomol Congr Gödöllö 1991: 289–302Google Scholar
  16. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  17. Kaule G (1991) Artenschutz in intensiv genutzter Agrarlandschaft. Universität Halle-Wittenberg Wiss Beitr 6: 386–397Google Scholar
  18. Kevan PG, Clark EA, Thomas VG (1990) Insect pollinators and sustainable agriculture. Am J Altern Agric 5: 13–22Google Scholar
  19. Krombein KV (1967) Tran-nesting wasps and bees: life histories, nests and associates. Smithsonian Press, Washington, DC, pp 1–570Google Scholar
  20. Kunz P (1989) Die Goldwespen Baden-Württembergs. Doctoral thesis, Fakultät für Bio- und Geowissenschaften, Universität KarlsruheGoogle Scholar
  21. Maas D (1988) Keimung und Etablierung von Streuobstwiesenpflanzen nach experimenteller Ansaat. Natur Landschaft 63: 411–415Google Scholar
  22. Morris MG, Rispin WE (1988) A beetle fauna of oolithic limestone grassland, and the responses of species to conservation management by different cutting regimes. Biol Conserv 43: 87–106Google Scholar
  23. Parrish JAD, Bazzazz FA (1979) Difference in pollination niche relationships in early and late successional plant communities. Ecology 60: 597–610Google Scholar
  24. Schmidt K (1981) Materialien zur Aufstellung einer Roten Liste der Sphecidae (Grabwespen) Baden-Württembergs III. Veröff Naturschutz. Landschaftspflege Bad-Württ 53/54: 155–234Google Scholar
  25. Schmidt K (1984) Materialien zur Aufstellung einer Roten Liste der Sphecidae (Grabwespen) Baden-Württembergs IV. Veröff Naturschutz Landschaftspflege Bad Württ 57/58: 219–304Google Scholar
  26. Schmidt K, Schmidegger C (1991) Faunistik und ökologie der solitären Faltenwespen (Eumenidae) Baden-Württembergs. Veröff Naturschutz Landschaftspflege Bad-Württ 66: 495–541Google Scholar
  27. Schneider N (1991) Contribution à la connaissance des Arthropodes rubicoles du Grand-Duché de Luxembourg. Bull Soc Nat luxemb 92: 85–119Google Scholar
  28. Southwood TRE (1988) Tactics, strategies and templets. Oikos 52: 1–18Google Scholar
  29. Steffan-Dewenter I, Tscharntke T (1994) Tagschmetterlinge als Indikatoren für Ackerbrachen. Mitt Dtsch Ges Allg Angew Entomol Jena 1993 (in press)Google Scholar
  30. STSC (1989) Statgraphics-Statistical Graphics System. Statistical Graphics Corporation, Rockville, MdGoogle Scholar
  31. Tasei J (1973) Le comportement de nidification chez Osmia cornuta Latr. et Osmia rufa L. (Hymenoptera, Megachilidae). Apidologie 4: 195–225Google Scholar
  32. Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92: 563–567Google Scholar
  33. Torchio PF (1990) Diversification of pollination strategies for US crops. Environ Entomol 19: 1649–1656Google Scholar
  34. Wesserling J, Tscharntke T (1994) Habitatwahl von bodennistenden Wildbienen und Grabwespen-Pflegemaßnahmen im Experiment. Mitt Dtsch Ges Allg Angew Entomol Jena 1993 (in press)Google Scholar
  35. Westrich P (1979) Faunistik und Ökologie der Hymenoptera aculeata des Tübinger Gebiets, vor allem des Spitzbergs, unter besonderer Berücksichtigung der in Holz und Pflanzenstengeln nistenden Arten. Doctoral thesis, Fakultät für Biologie, Universität TübingenGoogle Scholar
  36. Westrich P (1989) Die Wildbienen Baden-Württembergs. Ulmer. StuttgartGoogle Scholar
  37. Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology. Sinauer, Sunderland, Mass, pp 237–256Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • A. Gathmann
    • 1
  • H.-J. Greiler
    • 1
  • T. Tscharntke
    • 1
  1. 1.Fachgebiet AgrarökologieUniversitätGöttingenGermany

Personalised recommendations