Molecular and General Genetics MGG

, Volume 189, Issue 1, pp 90–101 | Cite as

Tn1525, a kanamycin R determinant flanked by two direct copies of IS15

  • Agnès Labigne-Roussel
  • Sylvie Briaux-Gerbaud
  • Patrice Courvalin


We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3′) (5″) type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant.

Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.


Kanamycin Transposable Element Aminoglycoside Kanamycin Resistance Restriction Endonuclease Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann BJ, Brooks Low K, Taylor AL (1976) Recalibrated linkage map of Escherichia coli K12. Bacteriol Rev 40:116–167Google Scholar
  2. Bartes SF, Martin WI, O'Connor PE, Marsden L, Vogel H (1969) New Salmonella serotype: Salmonella enteriditis serotype ordonez. Appl Microbiol 18:282–283Google Scholar
  3. Berg DE, Davies J, Allet B, Rochaix JD (1975) Transposition of R factor genes to bacteriophage λ. Proc Natl Acad Sci USA 72:3628–3632Google Scholar
  4. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II A multipurpose cloning system. Gene 2:95–113Google Scholar
  5. Bouanchaud DH, Chabbert YA (1969) Stable coexistence of three resistance factors (fi-) in Salmonella panama and Escherichia coli K12. J Gen Microbiol 58:107–113Google Scholar
  6. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41:459–472Google Scholar
  7. Calos MP, Miller JH (1980) Transposable elements. Cell 20:579–595Google Scholar
  8. Casewell MW, Datton MT, Webster M, Phillips I (1977) Gentamicin-resistant Klebsiella aerogenes in a urological ward Lancet 2:444–446Google Scholar
  9. Chabbert YA, Roussel A, Witchitz JL, Sanson-Le Pors MJ, Courvalin P (1979) Restriction endonuclease generated patterns of plasmids belonging to incompatibility groups Il, C, M, and N; application to plasmid taxonomy and epidemiology. In: Timmis and Pühler (eds) Plasmids of medical environmental and commercial importance. Elsevier/North-Holland Biochemical Press, Amsterdam, p 183Google Scholar
  10. Chabbert YA, Scavizzi MR, Witchitz JL, Gerbaud GR, Bouanchaud DH (1972) Incompatibility groups and the classification of Fi- resistance factors. J Bacteriol 112:666–675Google Scholar
  11. Clerget M, Chandler M, Caro L (1980) Isolation of an IS1 flanked kanamycin resistance from R1drd19. Mol Gen Genet 180:123–127Google Scholar
  12. Courvalin P, Fiandt M, Davies J (1978) DNA relationships between genes coding for aminoglycoside-modifying enzymes from antibiotic-producing bacteria and R plasmids In: Microbiology. American Society for Microbiology, p 262Google Scholar
  13. Datta N, Hedges RW, Becker D, Becker D, Davies J (1974) Plasmid-determined fusidic acid resistance in the enterobacteriaceae. J Gen Microbiol 83:191–196Google Scholar
  14. Datta N, Hughes VM, Nugent ME, Richard H (1979) Plasmids and transposons and their stability and mutability in bacteria isolated during an outbreak of hospital infection. Plasmid 2:182–196Google Scholar
  15. Davies J, Berg D, Jorgensen R, Fiandt M, Huang TSR, Courvalin P, Schoff J (1977) Transposable neomycin phosphotransferases. In: Drews, Högenauer (eds) R factors: their properties and possible control. Springer-Verlag, Wien, New York, p 101Google Scholar
  16. Davies J, Smith DI (1978) Plasmid-mediated resistance to antimicrobial agents. Ann Rev Microbiol 32:469–518Google Scholar
  17. Davies RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, New York, p 140Google Scholar
  18. Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646Google Scholar
  19. Falkow S, Guerry P, Edges RW, Datta N (1974) Polynucleotide sequence relationships among plasmids of the I compatibility complex. J Gen Microbiol 85:65–76Google Scholar
  20. Grindley NDF, Joyce CM (1980) Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc Natl Acad Sci USA 77:7176–7180Google Scholar
  21. Hershfield V, Boyer H, Chow L, Helinski DR (1976) Characterization of a mini-ColE1 plasmid. J Bacteriol 126:447–453Google Scholar
  22. Hu M, Deonier RC (1981) Mapping of IS1 element flanking the argF gene region of the E. coli chromosome. Mol Gen Genet 181:222–229Google Scholar
  23. Iida S, Hänni C, Echarti C, Arber W (1981) Is the IS-flanked r-determinant of the R-plasmid NR1 a transposon? J Gen Microbiol 126:413–425Google Scholar
  24. Kleckner N (1981) Transposable elements in prokaryotes. Ann Rev Genet 15:341–404Google Scholar
  25. Labigne-Roussel A, Gerbaud G, Courvalin P (1981) Translocation of sequences encoding antibiotic resistance from the chromosome to a receptor plasmid in Salmonella ordonez. Mol Gen Genet 182:390–408Google Scholar
  26. Labigne-Roussel A, Courvalin P (1983) IS15, a new insertion sequence widely spread in R plasmids of Gram-negative bacteria. Mol Gen Genet 189:102–112Google Scholar
  27. Labigne-Roussel A, Witchitz JL, Courvalin P (1982) Modular evolution of disseminated Inc 7-M plasmids encoding gentamicin resistance. Plasmid 8, 215–231Google Scholar
  28. Lederberg EM (1981) Plasmid reference center registry of transposon (Tn) allocations through july 1981 Gene 16:59–61Google Scholar
  29. Lee HI, Ohtsubo E, Deonier RC, Davidson N (1974) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. J Mol Biol 89:585–597Google Scholar
  30. Lesage DD, Gerbaud GR, Chabbert YA (1975) Carte génétique et structure chez E. coli K12 d'un plasmide de résistance isolé chez Salmonella ordonez. Ann Microbiol (Paris) 126A:435–448Google Scholar
  31. Maniatis T, Jeffrey A, Kleid DG (1975) Nucleotide sequence of the rightward operator of phage λ. Proc Natl Acad Sci USA 72:1184–1188Google Scholar
  32. Miller JH (1972) Preparation of λh 80 dlac phage. In: Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, p 319Google Scholar
  33. Nomura N, Yamagishi H, Oka A (1978) Isolation and characterization of transducing coliphage fd carrying a kanamycin resistance gene. Gene 3:39–51Google Scholar
  34. Novick RP, Clowes RC, Cohen SN, Curtiss III R, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 40:168–189Google Scholar
  35. Oka A, Sugisaki H, Takanami M (1980) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226Google Scholar
  36. Roberts RJ (1982) Restriction and modification enzymes and their recognition sequences. Nucleic Acid Res 10:117–144Google Scholar
  37. Rosner JL, Gottesman MM (1977) Transposition and deletion of Tn9: a transposable element carrying the gene for chloramphenicol resistance. In: Bukhari, Shapiro, Adhya (eds) DNA insertion elements plasmids and episomes. Cold Spring Harbor Laboratory, New York, p 213Google Scholar
  38. Roussel A, Carlier C, Gerbaud G, Chabbert YA, Croissant O, Blangy D (1979) Reversible translocation of antibiotic resistance determinants in Salmonella ordonez. Mol Gen Genet 169:13–25Google Scholar
  39. Sasaki I, Bertani G (1965) Growth abnormalities in Hfr derivatives of Escherichia coli strain. Can J Genet Microbiol 40:365–376Google Scholar
  40. Shinnick TM, Lund E, Smithies O, Blattner FR (1975) Hybridization of labeled RNA to DNA in agarose gels. Nucleic Acid Res 2:1911–1929Google Scholar
  41. Smith HO, Birnstiel ML (1976) A simple method for DNA restriction site mapping. Nucleic Acid Res 3:2387–2398Google Scholar
  42. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  43. Sutcliffe JG (1978) pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acid Res 5:2721–2828Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Agnès Labigne-Roussel
    • 1
  • Sylvie Briaux-Gerbaud
    • 1
  • Patrice Courvalin
    • 1
  1. 1.Laboratoire de Biochimie, L.A. CNRS 271, Unité de Bactériologie MédicaleInstitut PasteurParis, Cedex 15France

Personalised recommendations