Applied Physics B

, Volume 51, Issue 2, pp 141–145 | Cite as

Gain and saturation measurements in a discharge excited F2 laser using an oscillator amplifier configuration

  • C. Skordoulis
  • S. Spyrou
  • A. C. Cefalas
Contributed Papers

Abstract

The small-signal gain coefficient and the saturation intensity of a F2 pulsed discharge molecular laser at 157 nm have been measured using two discharge devices in an oscillator-amplifier configuration. The small signal gain coefficient was measured to be 5.2±0.4% cm−1 at 3 atm total pressure and 1.5 cm electrode spacing and 4.1±0.4% cm−1 at 2 atm total pressure and 2 cm electrode spacing while the values of the saturation intensity were 5 MW/cm2 and 4.6 MW/cm2, respectively.

PACS

42.60.D 42.55.H 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Pummer, K. Hohla, M. Diegelmann, I.P. Reilly: Opt. Commun. 28, 104 (1979)Google Scholar
  2. 2.
    J.R. Woodworth, J.K. Rice: J. Chem. Phys. 69, 2500 (1978)Google Scholar
  3. 3.
    V.N. Ishchenko, S.A. Kochubei, A.M. Razhev: Sov. J. Quantum Electron. 16, 707 (1986)Google Scholar
  4. 4.
    Y. Toyoshima, K. Kumuta, U. Itoh, A. Matsuda: Appl. Phys. Lett. 51, 1925 (1987)Google Scholar
  5. 5.
    J.C. White, H.G. Graighead, R.E. Howard, L.D. Jackel, R.E. Behringer, R.W. Epworth, D. Henderson, J.E. Sweeney: Appl. Phys. Lett. 44, 22 (1984)Google Scholar
  6. 6.
    A.C. Cefalas, C. Skordoulis, C.A. Nicolaides: Opt. Commun. 60, 49 (1986)Google Scholar
  7. 7.
    M.R. Therian, T.G. Slanger: J. Chem. Phys. 81 (9), 379 (1984)Google Scholar
  8. 8.
    K. Yamada, K. Miyazaki, T. Hasama, T. Sato: Appl. Phys. Lett. 54, 597 (1989)Google Scholar
  9. 9.
    A.C. Cefalas, C. Skordoulis, M. Kompitsas, C.A. Nicolaides: Opt. Commun. 55, 423 (1985)Google Scholar
  10. 10.
    E. Armandilo, A.J. Kearsley, C.E. Webb: J. Phys. 15, 177 (1982)Google Scholar
  11. 11.
    M. Ohwa, M. Obara: Appl. Phys. Lett. 51, 958 (1987)Google Scholar
  12. 12.
    A.C. Cefalas, C. Skordoulis, S. Spyrou, C.A. Nicolaides: 8th Int. Conf. on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (1986) Vol. 1, p. 218Google Scholar
  13. 13.
    R.C. Caro, M.C. Gower, C.E. Webb: J. Phys. D 15, 767 (1982)Google Scholar
  14. 14.
    J. Banic, T. Efthimiopoulos, B.P. Stoicheff: Appl. Phys. Lett. 37, 686 (1980)Google Scholar
  15. 15.
    L.M. Franz, J.I. Nodvik: J. Appl. Phys. 34, 2346 (1963)Google Scholar
  16. 16.
    S. Watanabe, T. Sato, H. Kashiwagi: IEEE J. QE-15, 322 (1979)Google Scholar
  17. 17.
    W.W. Rigrod: J. Appl. Phys. 34, 2602 (1963)Google Scholar
  18. 18.
    M. Diegelmann, K. Hohla, F. Rebentrost, K.L. Kompa: J. Chem. Phys. 76, 1233 (1982)Google Scholar
  19. 19.
    R. Sadighi-Bonabi, F.W. Lee, C.B. Collins: J. Appl. Phys. 53, 3418 (1982)Google Scholar
  20. 20.
    A. Yariv: Introduction to Optical Electronics (Holt, Reinhart and Winston 1976)Google Scholar
  21. 21.
    A.C. Cefalas, T.A. King: J. Phys. E 17, 760 (1984)Google Scholar
  22. 22.
    R.S. Berry, C.W. Reinmann: J. Chem. Phys. 38, 1540 (1963)Google Scholar
  23. 23.
    V.A. Chupka, J. Berkowitz, D. Gutman: J. Chem. Phys. 55, 2724 (1971)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. Skordoulis
    • 1
  • S. Spyrou
    • 1
  • A. C. Cefalas
    • 1
  1. 1.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations