Advertisement

Histotypic organization of the rat retina in vitro

  • Matthew M. LaVail
  • Walther Hild
Article

Summary

Retinae from two- and three-day-old rats were explanted in plasma clots and grown in vitro with the flying coverslip method. After seven to seventeen days in culture, the retinal tissue was fixed with aldehydes and osmium tetroxide and embedded for examination with the electron microscope. Study of cross sections (perpendicular to the coverslip) revealed a histotypic pattern of organization, especially in the thicker regions of the explants. Layering of cells quite similar to that in the intact retina was seen to develop from the relatively primitive, explanted retinal epithelium. However, each layer contained fewer cells than its counterpart in vivo. All major neuronal cell types were distinguished by their location and cytological characteristics. Development of the saccules of sensory cell outer segments was observed to occur in vitro by an infolding of the plasma membrane. Synaptic ribbon complexes developed to the mature form in the outer plexiform layers, while conventional synapses were numerous in the inner plexiform layers. Synaptic ribbons were also seen in bipolar cell axons in the inner plexiform layers. Amacrine and ganglion cells in these regions were relatively sparse. A survey of posterior regions of noncultured three-day-old rat retinae showed no synapses of any sort; therefore the synapses in the cultures formed in vitro. The retina is recommended for studies of synaptogenesis in tissue culture, for it offers several advantages over expiants from other areas of the neuraxis, including a clear layering pattern, many identifiable cell processes with characteristic synaptic relationships between them, and a well-defined sequence of developmental events.

Key-Words

Retina Tissue Culture Synapses Retinal Rods 

Zusammenfassung

Netzhäute von 2–3 Tage alten Ratten wurden in Plasma auf Deckgläsern in Rollerröhrchen zur Kultur angesetzt. Nach 7–17 Tagen in vitro wurden die Kulturen mit Aldehyden und Osmiumsäure fixiert und für elektronenmikroskopische Untersuchung weiterverarbeitet. Gewebsquerschnitte (senkrecht zum Deckglas) zeigten histotypische Organisation, besonders in den dickeren Abschnitten der Explantate. Die Schichtung der Zellen entwickelte sich ganz ähnlich derjenigen in der Retina in situ aus dem relativ primitiven ausgepflanzten Netzhautepithel, jedoch enthielten die verschiedenen Schichten weniger Zellen als in der Retina in vivo. Alle Hauptnervenzelltypen konnten auf Grund ihrer Lokalisation und ihrer cytologischen Merkmale unterschieden werden. Die Entstehung von membranösen Lamellen in den Außengliedern der Sinneszellen konnte als Einfaltung der Plasmamembran beobachtet werden. Synaptische Bandkomplexe in ausgereifter Form wurden in der äußeren plexiformen Schicht nachgewiesen, während konventionelle Synapsen in der inneren plexiformen Schicht häufig angetroffen wurden. Synaptische Bänder waren ebenfalls in den Axonen bipolarer Zellen in der inneren plexiformen Schicht nachweisbar. Amakrine und Ganglienzellen waren in diesen Regionen ziemlich selten vertreten. Da die Untersuchung von nicht kultivierten Netzhäuten drei Tage alter Tiere keinerlei Synapsen zeigte, wird geschlossen, daß die Synapsen in den Kulturen in vitro entstanden sein müssen. Die Netzhaut stellt ein günstiges Modell für die Synaptogenese in vitro dar, indem sie verschiedene Vorzüge vor Explantaten aus anderen Regionen des Zentralnervensystems aufweist, nämlich eine klare Schichtung, zahlreiche identifizierbare Zellfortsätze mit charakteristischen synaptischen Beziehungen und eine wohl definierte Folge von Entwicklungsvorgängen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. A., Ellis, R. A.: Ultrastructure of Trypanosoma lewisi: flagellum, microtubules, and the kinetoplast. J. Protozool. 12, 483–499 (1965).Google Scholar
  2. Bok, D.: An electron microscopic analysis of migration, division and differentiation of presumptive rat photoreceptors. Anat. Rec. 160, 319 (Abstract) (1968).Google Scholar
  3. Bornstein, M. B.: Observations on mouse nerve tissues in culture. NINDB monograph No. 2, Slow, latent, and temperature virus infections, pp. 177–185 (1965).Google Scholar
  4. Bunge, M. B., Bunge, R. P., Peterson, E. R.: The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 6, 728–749 (1967).Google Scholar
  5. Bunge, R. P., Bunge, M. B., Peterson, E. R.: An electron microscope study of cultured rat spinal cord. J. Cell Biol. 24, 163–191 (1965).Google Scholar
  6. Callas, G.: Personal communication (1967).Google Scholar
  7. —, Hild, W.: Electron microscopic observations of synaptic endings in cultures of mammalian central nervous tissue. Z. Zellforsch. 63, 686–691 (1964).Google Scholar
  8. Cohen, A. I.: Vertebrate retinal cells and their organization. Biol. Rev. 38, 427–459 (1963).Google Scholar
  9. Detwiler, S. R.: Experimental observations upon the developing rat retina. J. comp. Neurol. 55, 473–492 (1932).Google Scholar
  10. Dowling, J. E.: The organization of vertebrate visual receptors. In: Molecular organization and biological function, J. M. Allen, ed., chapt. 7, p. 186–210. New York: Harper and Row 1967.Google Scholar
  11. —: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. roy. Soc. B. 170, 205–228 (1968).Google Scholar
  12. -Dowling, J. E., Boycott, B. B.: Neural connections of the retina: Fine structure of the inner plexiform layer. Cold Spr. Harb. Symp. quant. Biol. 30, 393–402 (1965).Google Scholar
  13. —, Brown, J. E., Major, D.: Synapses of horizontal cells in rabbit and cat retinas. Science 153, 1639–1641 (1966).Google Scholar
  14. —, Gibbons, I. R.: The effect of vitamin A deficiency on the fine structure of the retina. In: The structure of the eye, G. K. Smelser, eed., p. 85–99, New York: Academic Press 1961.Google Scholar
  15. —: The fine structure of the pigment epithelium in the albino rat. J. Cell Biol. 14, 459–474 (1962).Google Scholar
  16. Droz, B.: Dynamic condition of proteins in the visual cells of rats and mice as shown by radioautography with labeled amino acids. Anat. Rec. 145, 157–168 (1963).Google Scholar
  17. Duncan, D., Hild, W.: Mitochondrial alterations in cultures of the central nervous system as observed with the electron microscope. Z. Zellforsch. 51, 123–135 (1960).Google Scholar
  18. Fine, B. S.: Limiting membranes of the sensory retina and pigment epithelium. Arch. Ophthal. 66, 847–860 (1961).Google Scholar
  19. —: Synaptic lamellas in the human retina: an electron microscopic study. J. Neuropath. exp. Neurol. 22, 255–262 (1962).Google Scholar
  20. Govardovsky, V. L., Kharkeevitch, T. A.: Histochemical and electron microscpical investigation on the development of photoreceptive cells under the conditions of tissue culture. Arkh. Anat. Gistol. Embriol. 49, 50–55 (1965) [Russisch].Google Scholar
  21. Grainger, F., James, D. W., Tresman, R. L.: An electron-microscopic study of the early outgrowth from chick spinal cord in vitro. Z. Zellforsch. 90, 53–67 (1968).Google Scholar
  22. Guillery, R. W., Sobkowicz, H. M., Scott, G. L.: Light and electron microscopical observations of the ventral horn and ventral root in long term cultures of the spinal cord of the fetal mouse. J. comp. Neurol. 134, 433–476 (1968).Google Scholar
  23. Hansson, H.-A., Sourander, P.: Studies on cultures of mammalian retina. Z. Zellforsch. 62, 26–47 (1964).Google Scholar
  24. Hild, W.: Myelogenesis in cultures of mammalian central nervous tissue. Z. Zellforsch. 46, 71–95 (1957a).Google Scholar
  25. —: Ependymal cells in tissue culture. Z. Zellforsch. 46, 259–271 (1957b).Google Scholar
  26. —: Cell types and neuronal connections in cultures of mammalian central nervous tissue. Z. Zellforsch. 69, 155–188 (1966).Google Scholar
  27. —, Callas, G.: The behavior of retinal tissue in vitro, light and electron microscopic observations. Z. Zellforsch. 80, 1–21 (1967).Google Scholar
  28. —, Tasaki, I.: Morphological and physiological properties of neurons and glial cells in tissue culture. J. Neurophysiol. 25, 277–304 (1962).Google Scholar
  29. James, D. W., Tresman, R. L.: Synaptic profiles in the outgrowth from chick spinal cord in vitro. Z. Zellforsch. 101, 598–606 (1969).Google Scholar
  30. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138 (Abstract) 1965.Google Scholar
  31. Kolb, H.: Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Phil. Trans. B 258, 261–283 (1970).Google Scholar
  32. Kroll, A. J., Machemer, R.: Experimental retinal detachment in the owl monkey. III. Electron microscopy of retina and pigment epithelium. Amer. J. Ophthal. 66, 410–427 (1968).Google Scholar
  33. Ladman, A. J.: The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J. biophysic. biochem. Cytol. 4, 459–466 (1958).Google Scholar
  34. LaVail, M. M.: A method of embedding selected areas of tissue cultures for electron microscopy. Tex. Rep. Biol. Med. 26, 215–222 (1968).Google Scholar
  35. - Formation of extracellular nuclear masses in developing cultures of rat retina. In preparation (1971).Google Scholar
  36. Liss, L., Wolter, J. R.: Human retinal neurons in tissue culture. Amer. J. Ophthal. 52, 834–841 (1961).Google Scholar
  37. Lucas, D. R.: In vitro maintenance of the mature guinea-pig retina. Vision Res. 2, 35–41 (1962).Google Scholar
  38. —: Special cytology of the eye. In: Cells and tissues in culture, E. N. Willmer, ed., vol. 2, p. 457–520. New York: Academic Press 1965.Google Scholar
  39. —, Trowell, O. A.: In vitro culture of the eye and the retina of the mouse and rat. J. Embryol. exp. Morph. 6, 178–182 (1958).Google Scholar
  40. Masurovsky, E. B., Bunge, R. P.: Fluoroplastic coverslips for long-term nerve tissue culture. Stain Technol. 43, 161–165 (1968).Google Scholar
  41. Meller, K., Eschner, J.: Vergleichende Untersuchungen über die Feinstruktur der Bipolarzellschicht der Vertebratenretina. Z. Zellforsch. 68, 550–567 (1965).Google Scholar
  42. —, Haupt, R.: Die Feinstruktur der Neuro-, Glio-, und Ependymoblasten von Hühnerembryonen in der Gewebekultur. Z. Zellforsch. 76, 260–277 (1967).Google Scholar
  43. Missotten, L.: The synapses in the human retina. In: The structure of the eye. II. Symposium, J. W. Rohen, ed., p. 17–28. Stuttgart: Schattauer 1965.Google Scholar
  44. Murray, M. R.: Nervous tissues in vitro. In: Cells and tissues in culture. Methods, biology, and physiology, E. N. Willmer, ed., vol. 2, p. 373–455. New York: Academic Press 1965.Google Scholar
  45. Nilsson, S. E. G.: Receptor cell outer segment development and ultrastructure of the disk membranes in the retina of the tadople (Rana pipiens). J. Ultrastruct. Res. 11, 581–620 (1964).Google Scholar
  46. Olney, J. W.: Centripetal sequence of appearance of receptor-bipolar synaptic structures in developing mouse retina. Nature (Lond.) 218, 281–282 (1968a).Google Scholar
  47. —: An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest. Ophthal. 7, 250–268 (1968b).Google Scholar
  48. Pei, Y. F., Smelser, G. K.: Some fine structural features of the ora serrata region in primate eyes. Invest. Ophthal. 7, 672–688 (1968).Google Scholar
  49. Pellegrino de Iraldi, A., Jaim Etcheverry, G.: Granulated vesicles in retinal synapses and neurons. Z. Zellforsch. 81, 283–296 (1967).Google Scholar
  50. Peterson, E. R., Crain, S. M., Murray, M. R.: Differentiation and prolonged maintenance of bioelectrically active spinal cord cultures (rat, chick and human). Z. Zellforsch. 66, 130–154 (1965).Google Scholar
  51. Pomerat, C. M., Costero, I.: Tissue cultures of cat cerebellum. Amer. J. Anat. 99, 211–222 (1956).Google Scholar
  52. Raviola, G., Raviola, E.: Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. Amer. J. Anat. 120, 403–426 (1967).Google Scholar
  53. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).Google Scholar
  54. Richardson, T. M.: Cytoplasmic and ciliary connections between the inner and outer segments of mammalian visual receptors. Vision Res. 9, 727–731 (1969).Google Scholar
  55. Sheffield, J. B.: Microtubules in the outer nuclear layer of rabbit retina. J. Microsc. 5, 173–180 (1966).Google Scholar
  56. Sidman, R. L.: Tissue culture studies of inherited retinal dystrophy. Dis. nerv. Syst. 22, (4), 14–20 (1961).Google Scholar
  57. Sobkowicz, H. M., Guillery, R. N., Bornstein, M. B.: Neuronal organization in long term cultures of the spinal cord of the fetal mouse. J. comp. Neurol. 132, 365–396 (1968).Google Scholar
  58. Stefanelli, A., Zacchei, A. M., Caravita, S., Cataldi, E., Ieradi, L. A.: Sinapsi in vitro da cellule disgregate di retina di embrione di pollo. R. C.Acead. naz. Lincei 40, 758–762 (1966a).Google Scholar
  59. Stefanelli, A. et al.: Differenziamento in riaggregati di retina in vitro. Arch. Zool. ital. 51, 985–996 (1966b).Google Scholar
  60. —: Differenziamento di fotorecettori di pollo in riaggregati coltivati in vitro. R. C. Accad. naz. Lincei 42, 594–599 (1967a).Google Scholar
  61. —: New-forming retinal synapses in vitro. Experientia (Basel) 23, 1–5 (1967b).Google Scholar
  62. Stell, W. K.: Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec. 153, 389–398 (1965).Google Scholar
  63. —: The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121, 401–424 (1967).Google Scholar
  64. Tansley, K.: The formation of rosettes in the rat retina. Brit. J. Ophthal. 17, 321–336 (1933).Google Scholar
  65. Tokuyasu, K., Yamada, E.: The fine structure of the retina. V. Abnormal retinal rods and their morphogenesis. J. biophys. biochem. Cytol. 7, 187–190 (1960).Google Scholar
  66. Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).Google Scholar
  67. Weidman, T. A., Kuwabara, T.: Postnatal development of the rat retina. Arch. Ophthal. 79, 470–484 (1968).Google Scholar
  68. Wolf, M. K.: Differentiation of neuronal types and synapses in myelinating cultures of mouse cerebellum. J. Cell Biol. 22, 259–280 (1964).Google Scholar
  69. —: Anatomy of cultured mouse cerebellum. II; Organotypic migration of granule cells demonstrated by silver impregnation of normal and mutant cultures. J. comp. Neurol. 140, 281–298 (1970).Google Scholar
  70. —, Dubois-Dalcq, M.: Anatomy of cultured mouse cerebellum. I. Golgi and electron microscopic demonstration of granule cells, their afferent and efferent synapses. J. comp. Neurol. 140, 261–280 (1970).Google Scholar
  71. Yamada, E., Ishikawa, T.: Some observations on the submicroscopic morphogenesis of the human retina. In: The structure of the eye, II. Symposium, J. W. Rohen, ed., p. 5–16. Stuttgart: Schattauer 1965.Google Scholar
  72. Young, R. W.: Renewal of photoreceptor outer segments. Anat. Rec. 151, 484 (Abstract) (1965).Google Scholar
  73. —: Passage of newly formed protein through the connecting cilium of retinal rods in the frog. J. Ultrastruct. Res. 23, 462–473 (1968).Google Scholar
  74. —, Droz, B.: The renewal or protein in retinal rods and cones. J. Cell Biol. 39, 169–184 (1968).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Matthew M. LaVail
    • 1
  • Walther Hild
    • 1
  1. 1.Department of AnatomyThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations