Applied Physics B

, Volume 54, Issue 5, pp 477–485 | Cite as

Quantum nondemolition measurement of transverse atomic position in Kapitza-Dirac atomic beam scattering

  • M. A. M. Marte
  • P. Zoller
Diffraction Of Atoms

Abstract

It is demonstrated that one can measure the distribution of the transverse position of an atom crossing one or more optical cavities by monitoring the phase of the standing wave fields in the cavities. For the atom-field interaction the Kapitza-Dirac regime is assumed; it is shown that in this regime the method represents a quantum nondemolition measurement of the atomic position. On the other hand it can be applied to prepare narrow distributions of the transverse atomic position. In order to show this, a numerical simulation is performed, which illustrates the collapse of a broad initial Gaussian wavepacket, which can be coherent or incoherent, to a distribution with narrow peaks. Preparing the cavity fields in a squeezed state, one can greatly enhance the impact of the cavity field measurements on the atomic density matrix.

PACS

03.65.Bz 42.50.Dv 42.50.Vk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See: Special issue The Mechanical Effects of Light in J. Opt. Soc. Am. B 2, Vol. 11 (1985) and special issue on Laser Cooling and Trapping of Atoms in J. Opt. Soc. Am. B 4, Vol. 11 (1989)Google Scholar
  2. 2.
    For a review see: V.I. Balykin, V. S. Letokhov: Physics Today (April 1989)Google Scholar
  3. 3.
    D.W. Keith, M.L. Schattenburg, H.I. Smith, D.E. Pritchard: Phys. Ref. Lett. 61, 1580 (1988); P.L. Gould, G.A. Ruff, D.E. Pritchard: Phys. Rev. Lett. 56, 827 (1986)Google Scholar
  4. 4.
    M. Kasevich, S. Chu: Phys. Rev. Lett. 67, 181 (1991)Google Scholar
  5. 5.
    O. Carnal, J. Mlynek: Phys. Rev. Lett. 66, 2689 (1991)Google Scholar
  6. 6.
    Ch.J. Bordé: Phys. Lett. A 140, 10 (1989); F. Riehle, Th. Kisters, A. Witte, J. Helmcke, Ch.J. Bordé: Phys. Rev. Lett. 67, 177 (1991)Google Scholar
  7. 7.
    V.P. Chebotayev, B.Ya. Dubetskii, A.P. Kazantsev, V.P. Yakovlev: J. Opt. Soc. Am. B 2, 1791 (1985)Google Scholar
  8. 8.
    E.M. Wright, P. Meystre: Opt. Commun. 75, 388 (1990)Google Scholar
  9. 9.
    M.A.M. Marte, J.I. Cirac, P. Zoller: J. Mod. Opt. 38, 2265 (1991);Google Scholar
  10. 9a.
    M.A.M. Marte, P. Zoller, M.J. Holland, R. Graham, D.F. Walls: In Proc. Int'l. Conf. Quantum Measurements in Optics, Cortina, ed. by P. Tombesi (Plenum, New York) to be publishedGoogle Scholar
  11. 10.
    C.M. Caves: Phys. Rev. D 33, 1643 (1986) and Phys. Rev. D 35, 1815 (1987); C.M. Caves, G.J. Milburn: Phys. Rev. A 36, 5543 (1987)Google Scholar
  12. 11.
    J.E. Thomas: Phys. Rev. A 42, 5652 (1990)Google Scholar
  13. 12.
    G.J. Milburn: Phys. Rev. A 36, 5271 (1987)Google Scholar
  14. 13.
    H.P. Yuen, J.H. Shapiro: IEEE Trans. IT-26, 78 (1980); B.L. Schumaker: Opt. Lett. 9, 189 (1984); B. Yurke, P. Grangier, R.E. Slusher, M.J. Potasek: Phys. Rev. A 35, 3586 (1987)Google Scholar
  15. 14.
    For a definition of “QND” or “back action evading” measurements see C.N. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann: Rev. Mod. Phys. 52, 341 (1980)Google Scholar
  16. 15.
    M. Brune, S. Haroche, V. Lefevre, J.-M. Raimond, N. Zagury: Phys. Rev. Lett. 65, 976 (1990)Google Scholar
  17. 16.
    M.J. Holland, D.F. Walls, P. Zoller: Phys. Rev. Lett. 67, 1716 (1991)Google Scholar
  18. 17.
    P. Storey, M.J. Collett, D.F. Walls: Phys. Rev. Lett. 68, 472 (1992)Google Scholar
  19. 18.
    M. Wilkens, E. Schumacher, P. Meystre: Opt. Commun. 86, 34 (1991)Google Scholar
  20. 19.
    A method similar the homodyne scheme for pulsed and Q-switched light of P. Kumar, O. Aytür, J. Huang: Phys. Rev. Lett. 64, 1015 (1990) or e.g., K. Bergman, H.A. Haus: Opt. Lett. 16, 663 (1991) might be usedGoogle Scholar
  21. 20.
    See: Special issues on Squeezed States: Mod. Opt. 34, 709 (1987) and J. Opt. Soc. Am. B 4, 1450 (1987)Google Scholar
  22. 21.
    H.P. Yuen: Phys. Rev. A 13, 2226 (1976)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. A. M. Marte
    • 1
  • P. Zoller
    • 2
  1. 1.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria
  2. 2.Joint Institute for Laboratory AstrophysicsUniversity of ColoradoBoulderUSA

Personalised recommendations