Current Genetics

, Volume 24, Issue 1–2, pp 141–148 | Cite as

Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene

  • Kunliang Guan
  • Lynn Farh
  • Tricia K. Marshall
  • Robert J. Deschenes
Original Articles

Abstract

The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.

Key words

Saccharomyces cerevisiae Dynamin Mitochondria GTP binding protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball EH, Singer SJ (1982) Proc Natl Acad Sci USA 79:123–126Google Scholar
  2. Beltzer JP, Morris SR, Kohlhaw GB (1988) J Biol Chem 263:368–374Google Scholar
  3. Bereiter-Hahn J (1976) Biophys Acta 423:1–14Google Scholar
  4. Bliek AM van der, Meyerowitz EM (1991) Nature 351:411–414Google Scholar
  5. Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB (1991) Nature 351:583–586Google Scholar
  6. Deschenes RJ, Broach JR (1987) Mol Cell Biol 7:2344–2351Google Scholar
  7. Dever TE, Glynias MJ, Merrick WC (1987) Proc Natl Acad Sci USA 84:1814–1818Google Scholar
  8. Dujon B (1981) In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces: life cycle and Inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 505–635Google Scholar
  9. Glick B, Schatz G (1991) Annu Rev Genet 25:21–44Google Scholar
  10. Guan K, Deschenes RJ, Qiu H, Dixon JE (1991) J Biol Chem 266:12964–12970Google Scholar
  11. Guan K, Deschenes RJ, Dixon JE (1992) J Biol Chem 267:10024–10030Google Scholar
  12. Heijne G von (1986) EMBO J 5:1335–1342Google Scholar
  13. Hoffman CS, Winston F (1987) Gene 57:267–272Google Scholar
  14. Huffaker TC, Thomas JH, Botstein D (1988) J Cell Biol 106:1997–2010Google Scholar
  15. Ito H, Fukada Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  16. Jacobs CW, Adams AEM, Pringle JR (1988) J Cell Biol 107:1409–1426Google Scholar
  17. James P, Whelen S, Hall B (1991) J Biol Chem 266:5616–5624Google Scholar
  18. Jones BA, Fangman WL (1992) Genes Dev 6:380–389Google Scholar
  19. Lin A, Krockmalnic G, Penman S (1990) Proc Natl Acad Sci USA 87:8565–8569Google Scholar
  20. McConnell SJ, Stewart LC, Talin A, Yaffe MP (1990) J Cell Biol 111:967–976Google Scholar
  21. McMullin TW, Hallberg RL (1988) Mol Cell Biol 8:371–380Google Scholar
  22. Myers AM, Crivellone MD, Tzagoloff A (1987) J Biol Chem 262:3388–3397Google Scholar
  23. Nakayama M, Nagata K, Kato A, Ishihama A (1991) J Biol Chem 266:21404–21408Google Scholar
  24. Obar RA, Collins CA, Hammerback JA, Shpetner HS, Vallee RB (1990) Nature 347:256–261Google Scholar
  25. Poodry CA, Edgar L (1979) J Cell Biol 81:520–527Google Scholar
  26. Pringle JR, Adams AEM, Drubin DG, Haarer BK (1991) Methods Enzymol 194:565–602Google Scholar
  27. Rothman JH, Stevens TH (1986) Cell 47:1041–1051Google Scholar
  28. Rothman JH, Raymond CK, Gilbert T, O'Hara PJ, Stevens TH (1990) Cell 61:1063–1074Google Scholar
  29. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  31. Scaife R, Margolis RL (1990) J Cell Biol 111:3023–3033Google Scholar
  32. Schmitt ME, Brown TA, Trumpower BL (1990) Nucleic Acids Res 18:3091–3092Google Scholar
  33. Schnapp BJ, Reese TS (1989) Proc Natl Acad Sci USA 86:1548–1552Google Scholar
  34. Sherman F, Fink GR, Hicks JB (1986) In: Laboratory course manual: methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 117–159Google Scholar
  35. Shpetner HS, Vallee RB (1989) Cell 59:421–432Google Scholar
  36. Shpetner HS, Vallee RB (1992) Nature 355:733–735Google Scholar
  37. Southern E (1975) J Mol Biol 98:503–517Google Scholar
  38. Stevens B (1981) In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces: life cycle and Inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 471–504Google Scholar
  39. Stimmel JB, Deschenes RJ, Volker C, Stock J, Clarke S (1990) Biochemistry 29:9651–9659Google Scholar
  40. Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225Google Scholar
  41. Vale RD, Reese TS, Sheetz MP (1985a) Cell 42:39–50Google Scholar
  42. Vale RD, Schnapp BJ, Mitchison T, Steuer E, Reese TS, Sheetz MP (1985b) Cell 43:623–632Google Scholar
  43. Vallee RB, Shpetner HS, Paschal BP (1989) Trends Neurosci 12:66–70Google Scholar
  44. Whiteway M, Hougan L, Thomas DY (1990) Mol Cell Biol 10:217–222Google Scholar
  45. Yaffe MP, Schatz G (1984) Proc Natl Acad Sci USA 81:4819–4823Google Scholar
  46. Yeh E, Carbon J, Bloom K (1986) Mol Cell Biol 6:158–167Google Scholar
  47. Yeh E, Driscoll R, Coltera M, Olins A, Bloom K (1991) Nature 349:713–715Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kunliang Guan
    • 1
  • Lynn Farh
    • 2
  • Tricia K. Marshall
    • 2
  • Robert J. Deschenes
    • 2
  1. 1.Department of BiochemistryUniversity of MichiganAnn ArborUSA
  2. 2.Department of BiochemistryUniversity of IowaIowa CityUSA

Personalised recommendations