Advertisement

Current Genetics

, Volume 24, Issue 1–2, pp 45–52 | Cite as

Polyploidy in the haplontic yeast Schizosaccharomyces pombe: construction and analysis of strains

  • M. Molnar
  • M. Sipiczki
Original Articles

Abstract

The fission yeast Schizosaccharomyces pombe has a haplontic life cycle in which the diplophase is confined to the zygote. Through the use of one- and two-step protoplast fusions we show that the ploidy can be increased up to pentaploid. The polyploid fusion products are rather unstable and segregate cells of lower ploidies by gradual loss of chromosomes during mitotic divisions. The polyploid cells conjugate normally but are prone to arrest at various stages of meiosis (1-, 2- and 3-spored asci, binucleate spores) and/or produce inviable, most probably aneuploid, spores. Marker segregation in the complete tetrads indicates the multiple association of homologous chromosomes. In tetra- and penta-ploid meiosis, multispored (6- to 7-spored) asci are also produced, probably by postmeiotic division of the nuclei.

Key words

Polyploidy Fission yeast Mitotic stability Meiosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egel R (1989) Mating-type genes, meiosis, and sporulation. In: Nasim A, Young P, Johnston BF (eds) Molecular biology of the fission yeast. Academic Press, New York, pp 31–73Google Scholar
  2. Flores da Cunha M (1970) Genet Res 16:127–144Google Scholar
  3. Grallert B, Sipiczki M (1989) Curr Genet 15:231–233Google Scholar
  4. Grallert B, Sipiczki M (1991) Curr Genet 20:199–204Google Scholar
  5. Gunge N (1966) Jpn J Genet 4:203–214Google Scholar
  6. Gutz H (1967) Science 158:796–798Google Scholar
  7. Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 395–446Google Scholar
  8. Hirata A, Tanaka K (1982a) J Cell Sci 56:263–279Google Scholar
  9. Hirata A, Tanaka K (1982b) J Gen Appl Microbiol 28:263–274Google Scholar
  10. Kielland-Brandt MC, Nilsson-Tillgren T, Petersen JGL, Holmberg S, Gjermansen C (1983) Approaches to the genetic analysis and breeding of brewer's yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer Verlag, New York, pp 421–437Google Scholar
  11. Leupold U (1955) Schweiz Z Allg Pathol Bakteriol 18:1141–1146Google Scholar
  12. Leupold U (1956) C R Trav Lab Carlsberg, Ser Physiol 26:221–251Google Scholar
  13. Mortimer RK (1958) Radiat Res 9:312–326Google Scholar
  14. Moreno S, Klar A, Nurse P (1991) Methods Enzymol 194:795–823Google Scholar
  15. Munz P, Wolf K, Kohli J, Leupold U (1989) Genetics overview. In: Nasim A, Young P, Johnston BF (eds) Molecular biology of the fission yeast. Acedemic Press, New York, pp 1–30Google Scholar
  16. Nakaseko Y, Niwa O, Yanagida M (1984) J Bacteriol 157:334–336Google Scholar
  17. Niwa O, Yanagida M (1985) Curr Genet 9: 463–470Google Scholar
  18. Sipiczki M (1989) Taxonomy and phylogenesis. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, New York, pp 431–452Google Scholar
  19. Sipiczki M, Ferenczy L (1977) Mol Gen Genet 151:77–81Google Scholar
  20. Sipiczki M, Heyer W-D, Kohli J (1985) Curr Microbiol 12:169–174Google Scholar
  21. Takagi A, Harashima S, Ishima Y (1983) Appl Environ Microbiol 45:1034–1040Google Scholar
  22. Thomas JH, Botstein D (1986) Cell 44:65–76Google Scholar
  23. Whittaker SG, Rockmill BM, Blechl AE, Maloney DH, Resnick MA, Fogel S (1988) Mol Gen Genet 215:10–18Google Scholar
  24. Widra A, DeLamater ED (1955) Am J Bot 42:423–435Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Molnar
    • 1
  • M. Sipiczki
    • 1
  1. 1.Department of GeneticsUniversity of DebrecenDebrecenHungary

Personalised recommendations