Advertisement

Current Genetics

, Volume 24, Issue 1–2, pp 38–44 | Cite as

Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae

  • Arja E. I. Vainio
  • Helena T. Torkkeli
  • Tiina Tuusa
  • Sirpa A. Aho
  • B. Richard Fagerström
  • Matti P. Korhola
Original Articles

Abstract

A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.

Key words

Glucoamylase Gene cloning Hormoconis resinae Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerer G (1983) In: Wu R, Grossman L, Moldave K (eds) Methods Enzymol 101:192–201Google Scholar
  2. Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1985) Agric Biol Chem 49:2521–2523Google Scholar
  3. Ashikara T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Agric Biol Chem 50:957–964Google Scholar
  4. Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412Google Scholar
  5. Ballance DJ (1986) Yeast 2:229–236Google Scholar
  6. Beggs JD (1978) Nature 275:104–109Google Scholar
  7. Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523Google Scholar
  8. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299Google Scholar
  9. Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655Google Scholar
  10. Dohmen RJ, Strasser AWM, Dahlems UM, Hollenberg CP (1990) Gene 95:111–121Google Scholar
  11. Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) J Gen Microbiol 136:913–920Google Scholar
  12. Gubler U, Hoffman BJ (1983) Gene 25:263–269Google Scholar
  13. Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139Google Scholar
  14. Hamilton R, Watanabe CK, de Boer HA (1987) Nucleic Acids Res 15:3581–3593Google Scholar
  15. Hanahan D (1983) J Mol Biol 166:557–580Google Scholar
  16. Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) Appl Microbiol Biotechnol 21:336–339Google Scholar
  17. Hejne G von (1983) Eur J Biochem 133:17–21Google Scholar
  18. Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH (1985) Science 228:21–26Google Scholar
  19. Irniger S, Egli CM, Braus GH (1991) Mol Cell Biol 11:3060–3069Google Scholar
  20. Itoh T, Ohtsuki I, Yamashita I, Fukui S (1987) J Bacteriol 169:4171–4176Google Scholar
  21. Joutsjoki V, Torkkeli T (1992) FEMS Microbiol Lett 99:237–244Google Scholar
  22. Kozak M (1981) Nucleic Acids Res 12:857–872Google Scholar
  23. Laemmli UK (1970) Nature 227:680–685Google Scholar
  24. Liljeström PL (1985) Nucleic Acids Res 13:7257–7268Google Scholar
  25. Jiljeström-Suominen PL, Joutsjoki V, Korhola M (1988) Appl Env Microbiol 54:245–249Google Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  27. Marshall JJ (1972) Wallerstein Labs Commun 35:49–98Google Scholar
  28. McCleary BV, Anderson MA (1980) Carbohydr Res 86:77–96Google Scholar
  29. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. de Mot R, van Dijk K, Donkers A, Verachtert H (1985) Appl Microbiol Biotechnol 22:222–226Google Scholar
  31. Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innis MA (1984) Mol Cell Biol 4:2306–2315Google Scholar
  32. Panchal CJ, Russell J, Sills AM, Stewart GG (1984) Food Technol 38:99–106Google Scholar
  33. Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  34. Suominen PL (1988) Characterization and applications of the yeast MEL1 gene. PhD thesis, University of HelsinkiGoogle Scholar
  35. Svensson B, Sierks MR, Jespersen H, Søgaard M (1991) Structure-function relationships in amylases. In: Friedman RB (ed) Biotechnology of amylodextrin oligosaccharides. American chemical society, Washington, DC, pp 128–143Google Scholar
  36. Tubb RS, Liljeström PL (1986) J Inst Brew 92:588–590Google Scholar
  37. Yamashita I, Itoh T, Fukui S (1985a) Appl Microbiol Biotechnol 23:130–133Google Scholar
  38. Yamashita I, Suzuki K, Fukui S (1985b) J Bacteriol 161:567–573Google Scholar
  39. Yamashita I, Nakamura M, Fukui S (1987) J Bacteriol 169:2142–2149Google Scholar
  40. Zagursky RJ, Berman ML, Baumeister K, Lomax N (1986) Gene Anal Tech 2:89–94Google Scholar
  41. Zaret KS, Sherman F (1982) Cell 28:563–573Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Arja E. I. Vainio
    • 1
  • Helena T. Torkkeli
    • 1
  • Tiina Tuusa
    • 1
  • Sirpa A. Aho
    • 1
  • B. Richard Fagerström
    • 1
  • Matti P. Korhola
    • 1
  1. 1.Research LaboratoriesAlko LtdHelsinkiFinland

Personalised recommendations