Advertisement

Current Genetics

, Volume 24, Issue 1–2, pp 26–31 | Cite as

‘Phase variation’-type regulation of gene expression and gene replacement mediated by FLP recombinase in the yeast Saccharomyces cerevisiae

  • Sergei V. Saveliev
  • Michael Yu. Fessing
  • Alexei M. Kopylov
  • Gleb I. Kirjanov
Original Articles

Abstract

Expression of a neomycin phosphotransferase II (NPTII) gene has been designed to be regulated by an FLP-mediated switching of the orientation of the NPTII coding region located on the invertible DNA segment in episomal yeast plasmids. Inversion of the segment from inverted to direct orientation with respect to the promoter resulted in a dramatic increase in G418 resistance. FLP also promoted a double reciprocal exchange between the transforming and the resident 2-μm plasmid, leading to insertion of the FLP and REP2 genes into the transforming plasmid. The results demonstrate a possible use of FLP recombinase for ‘phase variation’-type regulation of gene expression and gene replacement in eukaryotic cells.

Key words

Yeast FLP Phase variation-type expression Gene replacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams B (1972) J Bacteriol 111:308–315Google Scholar
  2. Baldari C, Murray JAH, Ghiara P, Cesareni G, Galeotti CL (1987) EMBO J 6:229–234Google Scholar
  3. Broach JR (1981) The yeast plasmid 2 μ circle. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 445–470Google Scholar
  4. Brosius J (1989) DNA 8:759–777Google Scholar
  5. Chen XL, Fukuhara H (1988) Gene 69:181–192Google Scholar
  6. Farrar NA, Williams KL (1988) Trends Genet 4:343–348Google Scholar
  7. Glasgow AC, Hughes KT, Simon MI (1989) Bacterial DNA inversion system. In: Berg ED, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington DC, pp 637–659Google Scholar
  8. Golic KG, Lindquist S (1989) Cell 59:499–509Google Scholar
  9. Green PJ, Pines O, Inouye M (1986) Annu Rev Biochem 55:569–597Google Scholar
  10. Huang L-C, Wood EA, Cox MM (1991) Nucleic Acids Res 19:443–448Google Scholar
  11. Johnston M, Davis RM (1984) Mol Cell Biol 4:1440–1448Google Scholar
  12. Koch C, VanderKhove J, Kahmann R (1988) Proc Natl Acad Sci USA 85:4237–4241Google Scholar
  13. Maniatis T, Sambrook J, Fritsch E (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  14. McLeod M, Craft S, Broach JR (1986) Mol Cell Biol 6:3357–3367Google Scholar
  15. Norrander J, Kempe T, Messing J (1983) Gene 26:101–106Google Scholar
  16. Ogden JE, Stanway C, Kim S, Mellor J, Kingsman AJ, Kingsman SM (1986) Mol Cell Biol 6:4335–4343Google Scholar
  17. O'Gorman S, Fox DT, Wahl GM (1991) Science 251:1351–1355Google Scholar
  18. Rothstein R (1985) Cloning in yeast. In: Glover GM (ed) DNA cloning — a practical approach. IRL Press, Oxford, vol II, pp 45–66Google Scholar
  19. Sauer B, Henderson N (1989) Nucleic Acids Res 17:147–161Google Scholar
  20. Sauer B, Henderson N (1990) New Biol 2:441–449Google Scholar
  21. Southern P, Berg PJ (1982) Mol Appl Genet 1:327–341Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Sergei V. Saveliev
    • 1
  • Michael Yu. Fessing
    • 1
  • Alexei M. Kopylov
    • 1
  • Gleb I. Kirjanov
    • 1
  1. 1.A. N. Belozersky Institute of Physical-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations