Oecologia

, Volume 83, Issue 1, pp 14–19

The maturity index: an ecological measure of environmental disturbance based on nematode species composition

  • Tom Bongers
Original Papers

Summary

Nematode assemblages constitute a potential instrument for assessing the quality of submersed, temporarily submersed, and terrestrial soils and for the development of an ecological typology and biomonitoring system. Interpretation of physical or pollution-induced disturbances has hitherto mainly been based on changes in diversity, dominance patterns or percentage of dorylaimids (Adenophorea). The maturity index, based on the nematode fauna, is proposed as a gauge of the condition of the soil ecosystem. Values on a coloniser/persister scale are given for nematodes that occur in The Netherlands. The possibilities of the use of this index are demonstrated by a retrospective interpretation of some literature data. The use of nematodes in environmental studies is discussed.

Key words

Nematodes Maturity Ecology Colonization Biomonitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrássy I (1959) Taxonomische Übersicht der Dorylaimen (Nematoda). I. Acta Zool Acad Sci Hung 5 (3-4):191–240Google Scholar
  2. Boag B, Alphey TJW (1988) Influence of interspecific competition on the population dynamics of migratory plant-parasitic nematodes with r and K survival strategies. Rev Nematol 11:321–326Google Scholar
  3. Bongers T (1985) Dutch forest nematodes. Nematologica 31:356–357Google Scholar
  4. Bongers T (1988) De Nematoden van Nederland. Natuurhistorische Bibliotheek van de KNNV, nr. 46. Pirola, SchoorlGoogle Scholar
  5. Bongers T, Goede RGM de, Kappers FI, Manger R (1989) Ecologische typologie van de Nederlandse bodem op basis van de vrij levende nematodenfauna. RIVM-rapport nr. 718602002Google Scholar
  6. Bongers T, Yeates GW (1988) Report on a workshop: Nematodes in natural systems; the use of nematodes in environmental studies. Pedobiologia 32:88Google Scholar
  7. Boström S (1989) The taxonomic position of some teratocephalid nematodes — a scanning electron microscope study. Rev Nematol 12:181–190Google Scholar
  8. Esbroek MLP van (1988) Voorkomen en successie van nematoden tijdens landfarming en rijping van havenslib. RIVM-rapport nr. 718602001Google Scholar
  9. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23:399–489Google Scholar
  10. Highler LWG (1985) Onderwaterbodems en de betekenis ervan voor het aquatisch ecosysteem. In: Bergen VWJ van den, Kerkhoff MAT, Wegman RCC (eds) Onderwaterbodems, Rol en Lot. Proc. Symp. 28–29 May 1985, Rotterdam, pp 14–25Google Scholar
  11. Jacobs LJ (1987) Inleiding tot de biologische kwaliteitsbeoordeling van onderwaterbodems in Nederland door middel van de Nematofauna. Rapport Vg. Nematologie i.o.v DBW/RIZA Lelystad.Google Scholar
  12. Johnson SR, Ferris JM, Ferris VR (1974) Nematode Community Structure of Forest Woodlots: III. Ordinations of taxonomic groups and biomass. J Nematol 6:118–126Google Scholar
  13. Kappers FI, Esbroek MLP van (1988) Ecological recovery of decontaminated soil. Proc. Sec. Intern. TNO/BMFT Conf. on Contaminated Soil. Hamburg, 11–15 April 1988Google Scholar
  14. Kroes HW (1983) Achtergronden van milieuhygienische normstelling voor oppervlaktewater H2O 16:281–284Google Scholar
  15. Lambshead PJD, Platt HM, Shaw KM (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:859–874Google Scholar
  16. Lee DL (1961) Two new species of cryptobiotic (anabiotic) freshwater nematodes, Actinolaimus hintoni sp. nov. and Dorylaimus keilini sp. nov. (Dorylaimidae). Parasitology 51:237–240Google Scholar
  17. Maggenti AR, Luc M, Raski DJ, Fortuner R, Geraert E (1987) A reappraisal of Tylenchina (Nemata). 2. Classification of the suborder Tylenchina (Nemata: Diplogasteria). Rev Nematol 10:135–142Google Scholar
  18. Parry GD (1981) The meanings of r-and K-selection. Oecologia 48:260–264Google Scholar
  19. Pitcher RS, McNamara DG (1972) The toxicity of low concentrations of silver and cupric ions to three species of plant-parasitic nematodes. Nematologica 18:385–390Google Scholar
  20. Platt HM, Shaw KM, Lambshead PJD (1984) Nematode species abundance patterns and their use in the detection of environmental perturbations. Hydrobiologia 118:59–66Google Scholar
  21. Platt HM, Warwick RM (1980) The significance of Free-living Nematodes to the littoral Ecosystem. Systematic Association Special Volume No 17(b), The Shore Environment, Vol 2; Ecosystems, pp 729–759Google Scholar
  22. Platt HM, Warwick RM (1983) Freeliving marine nematodes. Part I: British Enoplids. Synopses of the British Fauna (New Series) No. 28, Cambridge University PressGoogle Scholar
  23. Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part II: British Chromadorids Synopses of the British Fauna (New Series) No. 38, E.J. Brill, LeidenGoogle Scholar
  24. Por FD, Masry D (1968) Survival of a nematode and an oligochaete species in the anaerobic benthal Lake Tiberias. Oikos 19:388–391Google Scholar
  25. Samoiloff MR (1987) Nematodes as Indicators of Toxic Environmental Contaminants. In: Veech JA, Dickson DW (eds) Vistas on Nematology. E.O. Painter Printing Co. De Leon Springs, Florida, pp 433–439Google Scholar
  26. Schiemer F, Duncan A (1974) The oxygen consumption of a freshwater benthic nematode Tobrilus gracilis (Bastian). Oecologia 15:121–126Google Scholar
  27. Schiemer F (1983) Comparative aspects of food dependence and energetics of free living nematodes. Oikos 41:32–42Google Scholar
  28. Siddiqi MR (1986) Tylenchida, Parasites of Plants and Insects. Commonwealth Agricultural Bureaux, LondonGoogle Scholar
  29. Sohlenius B (1985) Influence of climatic conditions on nematode coexistence: a laboratory experiment with a coniferous forest soil. Oikos 44:430–438Google Scholar
  30. Sturhan D (1989) Nematodes as potential indicators of heavy metals. In: Wal AF van der, Goede RGM de (eds) Nematodes in natural systems, a status report of a workshop. Meded. 199, Nematology Dept. Agric. Univ. Wageningen, p 41Google Scholar
  31. Tamis W (1986) Nematoden in een Ammoniumdepositiegradient in een Grovedennenbos. Hydrobiologisch Adviesburo Klink bv Wageningen. Rapporten en Mededelingen 23Google Scholar
  32. Tietjen JH, Lee JJ (1984) The use of Free-Living Nematodes as a Bioassay for Estuarine sediments. Mar Env Res 11:233–251Google Scholar
  33. Urk G van, Kerkum FCM (1988) Bottom fauna of polluted Rhine sediments. In: Wolf K, Brink WJ van den, Colon FJ (eds) Contaminated Soil '88. Kluwer Acad. Publ., pp 1405–1407Google Scholar
  34. Wasilevska L (1971) Nematodes of the dunes in the Kampinos Forest. II. Community structure based on numbers of individuals, state of biomass and respiratory metabolism. Ekol Polska XIX 38:651–688Google Scholar
  35. Wasilevska L (1974) Rola wskaznikowa wszystkozernej grupy nicieni glebowych. Wiad Ekol XX:385–390Google Scholar
  36. Wharton DA (1986) A functional biology of Nematodes. Croom Helm, London & SydneyGoogle Scholar
  37. Woombs M, Laybourn-Parry J (1984) Feeding biology of Diplogasteritus nudicapitatus and Rhabditis curvicaudata (Nematoda) related to food concentrations and temperature, in sewage treatment plants. Oecologia 64:163–167Google Scholar
  38. Zullini A (1976) Nematodes as indicators of river pollution. Nematol Medit 4:13–22Google Scholar
  39. Zullini A, Peretti E (1986) Lead pollution and moss-inhabiting nematodes of an industrial area. Water, Air, Soil Pollut 27:403–410Google Scholar
  40. Zullini A, Ricci C (1980) Bdelloid rotifers and nematodes in a small Italian stream. Freshwater Biol 10:67–72Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Tom Bongers
    • 1
  1. 1.Nematology DepartmentWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations