Applied Physics A

, Volume 54, Issue 6, pp 556–559

Alloying behavior at the AuGeNi/GaSb interface: Photoemission studies of the effects of annealing temperature

  • W. S. Tse
  • R. H. Chen
  • C. S. Ares Fang
  • J. R. Chen
Surfaces And Multilayers


An ultra-thin AuGeNi alloy (84%/12%/4% by weight) overlayer of 5 nm was evaporated onto Te-doped n-type (100) oriented GaSb substrates. Samples were annealed in ultra-high vacuum (UHV), with a base pressure of 10−10 Torr at either 300°C, 500°C, or 700°C for 12 h. The reacted interface was then revealed by Ar ion sputter-depth profiling. The highest percentage of Ge in the deep interface region was observed for the sample annealed at 500°C. Annealing at 500°C also leads to a uniform distribution of Ga, Sb, and Au concentrations. Results show that virtually all Au, Ge, and Ni evaporate away after annealing at 700°C. Au-based AuGa alloy formation was indicated by the shifts of Au 4f core-levels and the metallic Ga 3d peak. The small variation of Au 4f core-levels with sputtering for samples annealed at 500°C is the evidence of AuGa uniform alloying from the surface to the interface. It has been, therefore, concluded that annealing at 500°C forms a more uniform distribution of cluster size throughout the interface than annealing at 300°C or 700°C.


73.40 82.80 85.30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.L. Sharma, S.C. Gupta: Solid State Technol. 23, 90 (1980)Google Scholar
  2. 2.
    B.L. Sharma (ed.): Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum, New York 1984)Google Scholar
  3. 3.
    J.M. Woodall, L. Freehouf: J. Vac. Sci. Technol. 19, 794 (1981)Google Scholar
  4. 4.
    C.S. Fang, Y.L. Chang, W.S. Tse: Appl. Phys. A 49, 285 (1989)Google Scholar
  5. 5.
    H. Oechsner: Appl. Phys. 8, 185 (1975)Google Scholar
  6. 6.
    M.P. Seah: Thin Solid Films 81, 279 (1981)Google Scholar
  7. 7.
    G.E. Muilenberg (ed.): Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp. 1989)Google Scholar
  8. 8.
    M. Ogawa: J. Appl. Phys. 51, 406 (1980)Google Scholar
  9. 9.
    T.S. Kuan, P.E. Batson, T.N. Jackson, H. Rupprecht, E.L. Wilkie: J. Appl. Phys. 54, 6952 (1983)Google Scholar
  10. 10.
    M. Murakami, K.D. Childs, J.M. Baker, A. Callegari: J. Vac. Sci. Technol. B 4, 903 (1986)Google Scholar
  11. 11.
    R.E. Watson, J. Hudis, M. Perlman: Phys. Rev. B 4, 4139 (1971)Google Scholar
  12. 12.
    W.G. Petro, T. Kendelewicz, I. Lindau, W.E. Spicer: Phys. Rev. B 34, 7089 (1986)Google Scholar
  13. 13.
    L. Oberli, R. Monot, H.J. Mathieu, D. Landolt, J. Buttet: Surf. Sci. 106, 301 (1981)Google Scholar
  14. 14.
    T.T.P. Cheung: Surf. Sci. 127, L 129 (1983)Google Scholar
  15. 15.
    Y. Takasu, R. Unwin, B. Tesche, A.M. Bradshaw, M. Grunze: Surf. Sci. 77, 219 (1978)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • W. S. Tse
    • 1
  • R. H. Chen
    • 1
  • C. S. Ares Fang
    • 1
  • J. R. Chen
    • 2
  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan, Rep. of China
  2. 2.Department of Materials Science and EngineeringNational Tsingu-Hua UniversityHsinchuTaiwan, Rep. of China

Personalised recommendations