Applied Physics A

, Volume 54, Issue 2, pp 170–175

Laser induced forward transfer: The effect of support-film interface and film-to-substrate distance on transfer

  • Z. Kántor
  • Z. Tóth
  • T. Szörényi
Surfaces And Multilayers


A comparative study on metal pattern deposition of mm2-area by ablating chromium and titanium thin films from an optically transparent support and transferring the ablated material onto another substrate in close proximity with a single laser pulse (LIFT) is reported. The role of support-film interface and film-to-substrate distance in determining both ablation and transfer is discussed. The sequence of events as a function of processing fluence is interpreted by comparing experimental data with calculated temperature distributions. In the case of poorly adhering films the transfer yield is independent of film-to-substrate distance between 0 and 60 μm throughout the fluence range studied. The transmittance of the ablated areas of well adhering films decreases and that of the corresponding prints increases with increasing distance as evaporation becomes dominant.


42.60K 78.90 81.15 81.30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.P. Veiko: Lazernaya abrabotka pl'onochnih elementov (Izdatel'stvo, Leningrad 1986) p. 148Google Scholar
  2. 2.
    J. Bohandy, B.F. Kim, F.J. Adrian: J. Appl. Phys. 60, 1538 (1986)Google Scholar
  3. 3.
    F.J. Adrian, J. Bohandy, B.F. Kim, A.N. Jette: J. Vac. Sci. Technol. B 5, 1490 (1987)Google Scholar
  4. 4.
    J. Bohandy, B.F. Kim, F.J. Adrian, A.N. Jette: J. Appl. Phys. 63, 1158 (1988)Google Scholar
  5. 5.
    R.J. Baseman, A. Gupta, R.C. Sausa, C. Progler: Laser and Particle-Beam Chemical Processing for Microelectronics, Proc. MRS 101, ed. by D.J. Ehrlich, G.S. Higashi, M.M. Oprysko (MRS, Pittsburgh 1988) p. 237Google Scholar
  6. 6.
    E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere: J. Mater. Res. 4(5), 1082 (1989)Google Scholar
  7. 7.
    P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, I. Hevesi: Appl. Surf. Sci. 36, 157 (1989)Google Scholar
  8. 8.
    Zs. Tóth, Z. Kántor, P. Mogyorósi, T. Szörényi: In Laser Assisted Processing II, Proc. SPIE 1279, ed. by L.D. Laude (1990) p. 150Google Scholar
  9. 9.
    R.J. Baseman, J.C. Andreshak: Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, Proc. MRS 100, ed. by M.J. Aziz, L.E. Rehn, B. Stritzker (MRS, Pittsburgh 1988) p. 627Google Scholar
  10. 10.
    R.J. Baseman, N.M. Froberg: Appl. Phys. Lett. 55, 1841 (1989)Google Scholar
  11. 11.
    R.J. Baseman, N.M. Froberg. J.C. Andreshak, Z. Schlesinger: Appl. Phys. Lett. 56, 1412 (1990)Google Scholar
  12. 12.
    A.K. Jain, V.N. Kulkarni, D.K. Sood: Appl. Phys. 25, 127 (1981)Google Scholar
  13. 13.
    R.C. Weast (ed.): CRC Handbook of Chemistry and Physics, 59th edn. (CRC, Florida 1978–1979)Google Scholar
  14. 14.
    Y.S. Touloukian (ed.) Thermophysical Properties of Matter, Vol. 10, Thermal Diffusivity (IFI/Plenum, New York 1973)Google Scholar
  15. 15.
    V.J. Zaleckas, H.C. Koo: Appl. Phys. Lett. 31, 615 (1977)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Z. Kántor
    • 1
  • Z. Tóth
    • 1
  • T. Szörényi
    • 1
  1. 1.Research Group on Laser Physics of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations