Advertisement

Fresenius' Journal of Analytical Chemistry

, Volume 349, Issue 8–9, pp 679–683 | Cite as

Investigations on the determination of NO with galvanic ZrO2 solid electrolyte cells

  • U. Lawrenz
  • S. Jakobs
  • H. -H. Möbius
  • U. Schönauer
Lectures And Posters

Abstract

In order to demonstrate the usefulness of gassymmetrical galvanic ZrO2 solid electrolyte cells for the determination of NO, cell tensions caused by catalytically different active electrodes and thereby different oxygen partial pressures in N2/NO mixtures with a low oxygen concentration (<50 vol.-ppm) were measured in the temperature range of 500 to 800°C. Separate investigations demonstrated that the catalytic activity of Pt decreases with increasing sinter temperature (1000 to 1300°C), but is higher than the activity of perovskite type oxides La1−xSrxMeO3 (x=0.1.... 0.5; Me=Co, Mn, Fe, Cr). The activity of the perovskites decreases in the order Co>Mn ≈ Fe>Cr. Between different Pt electrodes changes of cell tension were measured when alternating between pure and NO containing nitrogen (e.g. 19.7 mV with 0.4 vol.-% NO). Cells with a Pt electrode and a perovskite electrode produce higher changes of the cell tension, but without going to zero in pure nitrogen due to own oxygen potentials of the mixed oxides.

Keywords

Oxygen Catalytic Activity Partial Pressure Perovskite Oxygen Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gauthier M, Chamberland A (1977) J Electrochem Soc 124:1579–1583Google Scholar
  2. 2.
    Yao S, Shimizu Y, Miura N, Yamazoe N (1992) Chem Lett 587–590Google Scholar
  3. 3.
    Hötzel G, Weppner W (1977) Sensors Actuators 12:449–453Google Scholar
  4. 4.
    Ishihara T, Shiokawa K, Eguchi K, Arai H (1989) Sensors Actuators 19:259–265Google Scholar
  5. 5.
    Akiyama M, Tamaki J, Miura N, Yamazoe N (1991) Chem Lett 1611–1616Google Scholar
  6. 6.
    Möbius H-H, Sandow H, Hartung R, Jakobs S, Guth U, Buhrow J (1992) Elektrochemische Sensorik Neues aus Forschung und Anwendung. DECHEMA-Monogr. VCH, Weinheim, pp 329–344Google Scholar
  7. 7.
    Tejuca LG, Fierro JLG, Tascon JMD (1989) Adv Catal 36:237–328Google Scholar
  8. 8.
    Tascon JMD, Tejuca LG (1980) React Kinet Catal Lett 15:185–191Google Scholar
  9. 9.
    Teraoka Y, Fukuda H, Kagawa S (1991) Chem Lett 1–4Google Scholar
  10. 10.
    Gessner MA, Nagy SG, Michaels JM (1988) J Electrochem Soc 135:1294–1301Google Scholar
  11. 11.
    Häfele E (1986) Thesis, University of Karlsruhe pp 81–87Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • U. Lawrenz
    • 1
  • S. Jakobs
    • 1
  • H. -H. Möbius
    • 1
  • U. Schönauer
    • 2
  1. 1.Institut für Physikalische ChemieUniversität GreifswaldGreifswaldGermany
  2. 2.Roth-Technik GmbHForschung für Automobil- und UmwelttechnikGaggenauGermany

Personalised recommendations