Fresenius' Journal of Analytical Chemistry

, Volume 353, Issue 3–4, pp 456–463 | Cite as

Comparative investigation on copper oxides by depth profiling using XPS, RBS and GDOES

  • H. Bubert
  • E. Grallath
  • A. Quentmeier
  • M. Wielunski
  • L. Borucki
Postersession New Possibilities For Quantification


Depth profiling has been performed by using X-ray photoelectron spectrometry (XPS) in combination with Ar-ion sputtering, Rutherford backscattering spectrometry (RBS) and glow discharge optical emission spectrometry (GDOES). The data obtained by XPS have been subjected to factor analysis in order to determine the compositional layering of the copper oxides. This leads to two or three relevant components within the oxide layers consisting of Cu2O or CuO dependent on the sample preparation. GDOES measurements show sputtering profiles which are seriously influenced by a varying sputter rate. To ensure the results obtained so far, RBS measurements of the oxide layers have been carried out in order to discover artefacts of the other methods used and to demonstrate the excellent suitability of RBS for quantitative analysis of these layers. Chemical analysis consisting of (1) carrier-gas fusion analysis (CGFA) and (2) selective dissolution of Cu2O/CuO allows the determination of the total amount of oxygen and copper, respectively, and can serve as a cornerstone of quantitative analysis.


Oxide Oxygen Copper Quantitative Analysis Sample Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimizu G, Nonaka H, Arai K (1992) Surf Interface Anal 19:365Google Scholar
  2. 2.
    Nonaka H, Shimizu T, Arai K (1990) Appl Phys Lett 57:2850Google Scholar
  3. 3.
    Manara A, Sirtori V, Mammarella L (1992) Surf Interface Anal 18:32Google Scholar
  4. 4.
    Sanz JM, Hofmann S (1984) J Electron Spectr Rel Phen 34:149; (1984) Thin Solid Films 120:185Google Scholar
  5. 5.
    Holm R, Storp S (1976) Appl Phys 9:217; (1977) Appl Phys 12:101Google Scholar
  6. 6.
    McIntyre NS, Chan TC (1990) In: Briggs D, Seah MP (eds). Practical surface analysis, 2nd edn. Wiley, ChichesterGoogle Scholar
  7. 7.
    Steffen HJ, Hofmann S (1989) Surf Interface Anal 14:59Google Scholar
  8. 8.
    Rönnquist A, Fischmeister H (1960–61) J Inst Metals 89:65Google Scholar
  9. 9.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MN, USAGoogle Scholar
  10. 10.
    Hedman J, Baer Y, Berndtsson A, Klasson M, Leonhardt G, Nilsson R, Nordling C (1977) J Electron Spectrosc Relat Phenom 11:171Google Scholar
  11. 11.
    Bubert H, Palmetshofer L, Stingeder G, Wielunski M (1991) Anal Chem 63:1562Google Scholar
  12. 12.
    Powell JS, Joy PC (1949) Anal Chem 21:296Google Scholar
  13. 13.
    Grallath E (1993) Max-Planck-Institut für Metallforschung, Laboratorium für Reinststoffanalytik, Dortmund, Germany (unpublished results)Google Scholar
  14. 14.
    Quentmeier A (1994) J Anal At Spectrom 9:355Google Scholar
  15. 15.
    Dessenne O, Quentmeier A, Bubert H (1993) Fresenius J Anal Chem 346:340Google Scholar
  16. 16.
    Gaarenstroom SW (1979) J Vac Sci Technol 16:600Google Scholar
  17. 17.
    Atzrodt V, Lange H (1983) Phys Status Solidi A 79:489Google Scholar
  18. 18.
    Solomon JS (1987) Thin Solid Films 154:11Google Scholar
  19. 19.
    Bubert H, Jenett H (1989) Fresenius Z Anal Chem 335:643Google Scholar
  20. 20.
    Malinowski ER, Howery DG (1980) Factor analysis in chemistry. Wiley, New YorkGoogle Scholar
  21. 21.
    Pedocchi L, Billi A, Marinelli E, Wu JX, Rovida G (1992) Surf Interface Anal 19:414Google Scholar
  22. 22.
    Kelly R (1989) Mater Sci Eng A 115:11Google Scholar
  23. 23.
    Betz G, Wehner GK (1983) In: Behrisch R. (ed) Sputtering by particle bombardment, II. Topics in applied physics, vol 52. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. 24.
    Chen TF, Garten RPH, Grallath E, Bubert H, Jenett H (1987) Fresenius Z Anal Chem 329:174Google Scholar
  25. 25.
    Bengtson A (1994) Swedish Institute for Metals Research. Stockholm, Sweden (private communication)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. Bubert
    • 1
  • E. Grallath
    • 2
  • A. Quentmeier
    • 1
  • M. Wielunski
    • 3
  • L. Borucki
    • 4
  1. 1.Institut für Spektrochemie und angewandte Spektroskopie (ISAS)DortmundGermany
  2. 2.Laboratorium für ReinststoffanalytikMlas-Planck-Institut für MetallforschungDortmundGermany
  3. 3.Dynamitron-Tandem-LaboratoriumRuhr-Universität BochumBochumGermany
  4. 4.Institut für Experimentalphysik IIIRuhr-Universität BochumBochumGermany

Personalised recommendations