Anatomy and Embryology

, Volume 177, Issue 3, pp 203–224 | Cite as

The development of the human brain from a closed neural tube at stage 13

  • F. Müller
  • R. O'Rahilly


Twenty-five embryos of stage 13 (28 days) were studied in detail and graphic reconstructions of seven of them were prepared. Thirty or more somitic paris are present, and the maximum is possibly 39. The notochord is almost entirely separated from the neural tube and the alimentary epithelium, and its rostral tip is closely related to the adenohypophysial pocket. Caudal to the cloacal membrane, the caudal eminence is the site of secondary neurulation. The eminence, which usualy contains isolated somites, in the area where new notochord, hindgut, and neural tube are forming. The neural cord develops into neural tube without the intermediate phase of a neural plate (secondary neurulation). Canalization is regular and the lumen is continuous with the central canal. The neural tube is now a closed system, filled with that may be termed “ependymal fluid.” The brain is widening in a dorsoventral direction. Neuromeres are still detectable. The following features are distinguishable: infundibular area of D 2, chiasmatic plate of D 1, “adult” lamina terminalis, and commissural plate (at levels of nasal plates). The beginning of the synencephalon of D 2 can be discerned. The retinal and lens discs are being defined. The mesencephalic flexure continnues to diminish. The midbrain possesses a sulcus limitans, and the tegmentum may show the medial longitudinal fasciculus. The isthmic segment is clearly separated from rhombomere 1. Lateral and ventral longitudinal fasciculi are usually present in the hindbrain, and the common afferent tract is beginning. Somatic and visceral efferent fibres are seen in certain nerves: 6, 12, 5, 7, 9–11. The first indication of the cerebellum may be visible in the alar lamina of rhombomere 1. The terminal-vomeronasal crest appears. Various cranial ganglia (e.g., vestibular, superior ganglia of 9, 10) are forming. The trigeminal ganglion may show its three major divisions. Epipharyngeal placodes of pharyngeal arches 2 to 5 contribute to cranial ganglia 7, 9, and 10. The spinal neural crest is becoming segregated, and the spinal ganglia are in series with the somites. Ventral spinal roots are beginning to develop.

Key words

Human embryo Human brain Secondary neurulation Neurat tube Neurat crest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman J, Bayer SA (1981) Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716Google Scholar
  2. Altman J, Bayer SA (1982) Development of the cranial nerve ganglia and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90Google Scholar
  3. Altman J, Bayer SA (1984) The development of the rat spinal cord. Adv Anat Embryol Cell Biol 85:1–166Google Scholar
  4. Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Inst 37:13–32Google Scholar
  5. Blechschmidt E (1963) Der menschliche Embryo. Dokumentationen zur kinetischen Anatomie. Schattauer, StuttgartGoogle Scholar
  6. Blechschmidt E, Gasser RF (1978) Biokinetics and biodynamics of human differentiation. Principles and applications. Thomas, Springfield, II.Google Scholar
  7. Bok ST (1915) Die Entwicklung der Hirnnerven und ihrer zentralen Bahnen. Die stimulogene Fibrillation. Folia Neuro Biol 9:475–565Google Scholar
  8. Bolli P (1966) Sekundäre Lumenbildungen im Neuralrohr und Rückenmark memschlicher Embryonen. Inaug. Diss. Zürich, Acta Anat 64:48–81Google Scholar
  9. Bossy J (1966) Diverticule télencéphalique de la région du neuropore antérieur chez un embryon humain de 35 mm V.C. Bull Assoc Anat 50:200–210Google Scholar
  10. Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol 161:225–236Google Scholar
  11. Brocklehurst G (1978) Spina bifida. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, 32:519–578Google Scholar
  12. Butler H, Juurlink BHJ (1987) An atlas for staging mammalian and chick embryos. CRC, Boca Raton, FloridaGoogle Scholar
  13. Buxton BH (1899) Photographs of a series of section of an early human embryo. J Anat Physiol 33:381–385Google Scholar
  14. Cheuk WL, Van de Water TR, Ruben RJ (1978) The fate mapping of the eleventh and twelfth day mouse otocyst: an in vitro study of the sites of origin of the embryonic inner ear sensory structures. J Morphol 157:249–267Google Scholar
  15. Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439Google Scholar
  16. Crosby CE, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. Macmillan, New YorkGoogle Scholar
  17. D'Amico-Martel A (1982) Temporal patterns of neurogensis in avian cranial sensory and autonomic ganglia. Am J Anat 163:351–372Google Scholar
  18. D'Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468Google Scholar
  19. Daikoku S (1958) Studies on the human foetal pituitary. 2. on the form and histological development, especially that of the anterior pituitary. Tokushima J Exp Med 5:214–231Google Scholar
  20. Davies AM, Lindsay RM (1985) The cranial sensory ganglia in culture: Differences in the response of placode-derived and neural crest-derived neurons to nerve growth factor. Dev Biol 111:62–72Google Scholar
  21. Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morphol 12:485–490Google Scholar
  22. Ferrand R (1972) Etude expérimentale des facteurs de la différenciation cytologique de l'adénohypophyse chez l'embryon de poulet. Arch Biol 83:297–371Google Scholar
  23. Ferrand R (1973) Origine exclusivement ectodermique de l'adénohypophyse chez la Caille: démonstrations par la méthode des associations tissulaires interspécifiques. CR Soc Biol 167:740–743Google Scholar
  24. Fol H (1884) L'anatomie d'un embryon humain d'un peu plus de trois semaines. Rec Méd Suisse Rom 4:177–201Google Scholar
  25. Fol H (1884) Description d'un embryon humain de cinq millimètres et six dixièmes. Rec Zool Suisse 1:357–401Google Scholar
  26. Gage SP (1905) A three weeks' human embryo, with especial reference to the brain and the nephric system. Am J Anat 4:409–443Google Scholar
  27. Gilbert MS (1935) Some factors influencing the early development of the mammalian hypophysis. Anat Rec 62:337–359Google Scholar
  28. Gilbert PW (1957) The origin and development of the human extrinsic ocular muscles. Contrib Embryol Carnegie Inst 36:59–78Google Scholar
  29. Goodrum GR, Jacobson AG (1981) Cephalic flexure formation in the chick embryo. J Exp Zool 216:399–408Google Scholar
  30. Gould BB, Rakic P (1981) The total number, time of origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Exp Brain Res 144:195–206Google Scholar
  31. His W (1890) Die Entwickelung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. LeipzigGoogle Scholar
  32. His W (1893) Vorschläge zur Einteilung des Gehirns. Arch Anat Entw 172–179Google Scholar
  33. Hochstetter F (1939) Über die Entwicklung und Differenzierung der Hüllen des menschlichen Gehirns. Morphol Jahrb 83:359–494Google Scholar
  34. Holmdahl DE (1926) Die erste Entwicklung des Körpers bei den Vögeln und Säugetieren, inkl. dem Menschen, besonders mit Rücksicht auf die Bildung des Rückenmarks, des Zöloms und der entodermalen Kloake nebst einem Exkurs über die Entstehung der Spina bifida in der Lumbosacralregion. II–V. Morphol Jahrb 55:112–208Google Scholar
  35. Holmdahl DE (1934) Neuralleiste und Ganglienleiste beim Menschen. Z Mikr Anat Forsch 36:137–178Google Scholar
  36. Ingalls NW (1907) Beschreibung eines menschlichen Embryos von 4:9 mm. Arch Mikr Anat Entw 70:506–576Google Scholar
  37. Jacobson AG, Miyamoto DM, Mai S-H (1979) Rathke's pouch morphogenesis in the chick embryo. J Exp Zool 207:351–365Google Scholar
  38. Källén B (1953) On the significance of the neuromeres and similar structures in vertebrate embryos. J Embryol Exp Morphol 1:393–398Google Scholar
  39. Kuhlenbeck H (1973) Medulla oblongata (and Pons). Ch. IX vol. 4. In: The central nervous system of vertebrates, vol 4, ch 9. Karger, BaselGoogle Scholar
  40. Kupffer von C (1906) Die Morphogenie des Centralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. Fischer, JenaGoogle Scholar
  41. McGrath P (1978) Aspects of the human pharyngeal hypophysis in normal and anencephalic fetuses and neonates and their posible significance in the mechanism of its control. J Anat 127:65–81Google Scholar
  42. McPhee JR, Van de Water TR (1986) Epithelial-mesenchymal tissue interactions guiding otic capsule formation: the role of the otocyst. J Embryol Exp Morphol 97:1–24Google Scholar
  43. Miale I, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296Google Scholar
  44. Morriss-Kay GM (1981) Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J Embryol Exp Morphol 65:225–241Google Scholar
  45. Morriss-Kay GM, Tuckett F, Solursch M (1986) The effects of Streptomyces hyaluronidase on tissue organization and cell cycle time in rat embryos. J Embryol Exp Morphol 98:59–70Google Scholar
  46. Müller F, O'Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol 168:419–432Google Scholar
  47. Müller F, O'Rahilly R (1984) Cerebral dysraphia (future anencephaly) in a human twin embryo at stage 13. Teratology 30:167–177Google Scholar
  48. Müller F, O'Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol 172:157–169Google Scholar
  49. Müller F, O'Rahilly R (1986a) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205–222Google Scholar
  50. Müller F, O'Rahilly R (1986b) Somitic-vertebral correlation and vertebral levels in the human embryo. Am J Anat 177:1–19Google Scholar
  51. Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (in press)Google Scholar
  52. Narayanan CH Narayanan Y (1978) Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. J Embryol Exp Morphol 43:85–105Google Scholar
  53. Noden DM (1986) Origins and patterning of craniofacial mesenchymal tissues. J Craniof Genet Dev Biol [Suppl], 2:15–31Google Scholar
  54. O'Rahilly R (1963) The early development of the otic vesicle in staged human embryos. J Embryol Exp Morphol 11:741–755Google Scholar
  55. O'Rahilly R (1965) The optic, vestibulocochlear, and terminal-vomeronasal neural crest in staged human embryos. In: Rohen JW (ed) Second symposium on eye structure. Schattauer, StuttgartGoogle Scholar
  56. O'Rahilly R (1966) The early development of the eye in staged human embryos. Contrib Embryol Carnegie Inst 38:1–42Google Scholar
  57. O'Rahilly R (1973) The early development of the hypophysis cerebri in staged human embryos. Anat Rec 175:511Google Scholar
  58. O'Rahilly R (1983a) The timing and sequence of events in the development of the human endocrine system during the embryonic period proper. Anat Embryol 166:439–451Google Scholar
  59. O'Rahilly R (1983b) The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol 168:87–99Google Scholar
  60. O'Rahilly R, Muecke EC (1972) The timing and sequence of events in the development of the human urinary system during the embryonic period proper. Z Anat Entwickl Gesch 138:99–109Google Scholar
  61. O'Rahilly R, Müller F (1984a) The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am J Anat 169:237–257Google Scholar
  62. O'Rahilly R, Müller F (1984b) Respiratory and alimentary relations in staged human embryos. New embryological data and congenital anomalies. Ann Otol Rhinol Laryngol 93:421–429Google Scholar
  63. O'Rahilly R, Müller F (1985) The origin of the ectodermal ring in staged human embryos of the first 5 weeks. Acta Anat 122:145–157Google Scholar
  64. O'Rahilly R, Müller F (1986) The meninges in human development. J Neuropath Exp Neurol 45:588–608Google Scholar
  65. O'Rahilly R, Müller F (1987) Developmental Stages in Human Embryos, Including a Revision of Streeter's “Horizons” and a Survey of the Carnegie Collection. Carnegie Inst Wash Publication 637Google Scholar
  66. O'Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171:243–257Google Scholar
  67. O'Rahilly R, Müller F, Hutchins GM, Moore GW (1987) Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am J Anat 180:69–86Google Scholar
  68. Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Inst 32:205–261Google Scholar
  69. Padget DH (1957) The development of the cranial venous system in man, from the viewpoint of comparative anatomy. Contrib Embryol Carnegie Inst 36:79–140Google Scholar
  70. Peach R, Koch WE (1977) Morphological observation on mammalian neural crest. J Anat 123:249Google Scholar
  71. Pearson AA, Sauter RW, Herrin GR (1964) The accessory nerve and its relation to the upper spinal nerves. Am J Anat 114:371–391Google Scholar
  72. Politzer G (1956) Die Entstehung des Ganglion acusticum beim Menschen. Acta Anat 26:1–13Google Scholar
  73. Rhines R, Windle WF (1941) The early development of the fasciculus longitudinalis medialis and associated neurons in the rat, cat and man. J Comp Neurol 75:165–189Google Scholar
  74. Schoenwolf GC (1977) Tail (end) bud contributions of the posterior region of the chick embryo. J Exp Zool 201:227–245Google Scholar
  75. Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376Google Scholar
  76. Schoenwolf GC, Nichols DH (1984) Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos. J Comp Neurol 222:496–505Google Scholar
  77. Seinsch W (1976) Der “Surface-Coat” embryonaler Hohlräume (Rathke-Tasche und Neuralrohr) der Maus. Acta Anat 95:537–544Google Scholar
  78. Smits-van Prooije AE (1986) Processes involved in normal and abnormal fusion of the neural walls in murine embryos. Profeschrift, LeidenGoogle Scholar
  79. Streeter GL (1904) The development of the cranial and spinal nerves in the occipital region of the human embryo. Am J Anat 4:83–116Google Scholar
  80. Streeter GL (1918a) The histogenesis and growth of the otic capsule and its contained periotic tissue-spaces in the human embryo. Contrib Embryol Carnegie Inst 7:5–54Google Scholar
  81. Streeter GL (1918b) The developmental alterations in the vascular system of the brain of the human embryo. Contrib Embryol Carnegie Inst 8:5–38Google Scholar
  82. Streeter GL (1942) Developmental horizons in human embryos. Description of age group XI, 13 to 20 somites, and age group-XII, 21 to 29 somites. Contrib Embryol Carnegie Inst 30:211–245Google Scholar
  83. Streeter GL (1945) Developmental horizons in human embryos. Description of age group XIII, embryos about 4 or 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Contrib Embryol Carnegie Inst 31:27–63Google Scholar
  84. Svajger A, Kostovic-Knezevic L, Bradamante Z, Wrischer M (1985) Tail gut formation in the rat embryo. Wilhelm Roux's Arch 194:429–432Google Scholar
  85. Tam PPL (1984) The histogenetic capacity of tissues in the caudal end of the embryonic axis of the mouse. J Embryol Exp Morphol 82:253–266Google Scholar
  86. Tam PPL, Kwong WH (1987) A study on the pattern of alkaline phosphatase activity correlated with observations on silver-impregnated structures in the developing mouse brain. J Anat 150:169–180Google Scholar
  87. Tello JF (1923) Les differenciations neuronales dens l'embryon du poulet pendant les premiers jours de l'incubation. Trab Lab Invest Biol (Madrid) 21:1–93Google Scholar
  88. Tuckett F, Lim L, Morriss-Kay GM (1985) The ontogenesis of cranial neuromeres in the rat embryo. I. A scanning electron microscope and kinetic study. J Embryol Exp Morphol 87:215–228Google Scholar
  89. Tuckett F, Morriss-Kay GM (1985) The ontogenesis of cranial neuromeres in the rat embryo. II. A transmission electron microscope study. J Embryol Exp Morphol 88:231–247Google Scholar
  90. Van Campenhout E (1948) La contribution des placodes épiblastiques au développement des ganglions des nerfs crâniens chez l'embryon humain. Arch Biol (Liège) 59:253–266Google Scholar
  91. Van de Water TR, Cheuk WL, Ruben RJ, Shea CA (1980) Ontogenic aspects of mammalian inner ear development. Birth Defects: Original Article Series 16:5–45Google Scholar
  92. Verbout AJ (1971) Die segmentalen Wellen der Chorda dorsalis. Ein intravitales oder ein postmortales Phänomen? Z Anat Entwickl Gesch 133:172–183Google Scholar
  93. Verwoerd CNA, Oostrom CG (1979) Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol 58:1–75Google Scholar
  94. Waterson D (1926) The development of the hypophysis cerebri in man, with a note upon its structure in the human adult. Trans R Soc (Edinb) 55:125–145Google Scholar
  95. Wentworth LE (1984a) The development of the cervical spinal cord of the mouse embryo. I. A Golgi analysis of ventral root neuron differentiation. J Comp Neurol 222:81–95Google Scholar
  96. Wentworth LE (1984b) The development of the cervical spinal cord of the mouse embryo: II. A Golgi analysis of sensory, commissural, and association cell differentiation. J Comp Neurol 222:95–115Google Scholar
  97. Wilson DB (1980) Pattern of proliferation in the hypophysis of the mouse embryo. A quantitative autoradiographic study. Anat Embryol 159:101–113Google Scholar
  98. Wilson DB (1983) Early development of the otocyst in an exencephalic mutant of the mouse. Acta Anat 117:217–224Google Scholar
  99. Wilson DB, Hendrickx AG (1981) Incorporation of tritiated thymidine in the hypophysis of the rhesus monkey (Macaca mulatta) embryo. J Anat 132:19–28Google Scholar
  100. Windle WF (1932) The neurofibrillar structure of the 7-mm cat embryo. J Comp Neurol 55:99–138Google Scholar
  101. Windle WF (1933) Neurofibrillar development in the central nervous system of cat embryos between 8 and 12 mm long. J Comp Neurol 58:643–723Google Scholar
  102. Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol [Suppl] 5:44–83Google Scholar
  103. Windle WF, Baxter RE (1936) The first neurofibrillar development in albino rat embryos. J Comp Neurol 63:173–185Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. Müller
    • 1
    • 2
    • 3
  • R. O'Rahilly
    • 1
    • 2
    • 3
  1. 1.Carnegie Laboratories of EmbryologyCalifornia Primate Research CenterDavisUSA
  2. 2.Department of Human AnatomyUniversity of CaliforniaDavisUSA
  3. 3.Department of NeurologyUniversity of CaliforniaDavisUSA

Personalised recommendations