Current Genetics

, Volume 18, Issue 1, pp 71–76

The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain

  • F. Gruber
  • J. Visser
  • C. P. Kubicek
  • L. H. de Graaff
Original Articles

Summary

Six uridine auxotroph mutants of Trichoderma reesei QM 9414 were isolated by resistance to 5-fluoroorotic acid and one strain was identified as OMP-decarboxylase negative (pyr-) by a radiometric enzyme assay. Transformation to uridine prototrophy was achieved with the pyr4 gene of Neurospora crassa (up to 1500 transformants/μg) and with pyrA of Aspergillus niger (700–800 transformants/μg). In many transformants the PYR+ function seems to be present as extrachromosomal DNA. There is evidence for a correlation between the stability of transformants and integration of the vector in the genome whereas unstable transformants are obtained when autonomous replication of the plasmid occurs.

Key words

Trichoderma reesei Transformation OMP-decarboxylase Vector integration Autonomous replication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballance DJ, Turner G (1985) Gene 36:321–331Google Scholar
  2. Berse B, Dmochowska A, Skrzypek M, Weglenski P, Bates MA, Weiss RL (1983) Gene, 25:109–117Google Scholar
  3. Boeke JD, La Croute F, Fink GR (1984) Mol Gen Genet 197:345–346Google Scholar
  4. Buxton FP, Radford A (1983) Mol Gen Genet 190:403–405Google Scholar
  5. Cantoral JM, Diez B, Barredo JL, Alvarez E, Martin JF (1987) Bio/Technology 5:494–497Google Scholar
  6. de Graaff LH, van den Broek HWJ, Visser J (1988) Curr Genet 13:315–321Google Scholar
  7. Diez B, Alvarez E, Cantoral JM, Barredo JL, Martin JF (1987) Curr Genet 12:277–282Google Scholar
  8. Goosen T, Bloemheuvel G, Gysler C, Bie DA, van den Broek HWJ, Swart K (1987) Curr Genet 11:499–503Google Scholar
  9. Goosen T, van Engelenburg F, Debets F, Swart K, Bos K, van den Broek HWJ (1989) Mol Gen Genet 219:282–288Google Scholar
  10. Hynes MJ, Corrick CM, King JA (1983) Mol Cell Biol 3:1430–1439Google Scholar
  11. Kubicek CP (1982) Arch Microbiol132:349–354Google Scholar
  12. Mandels M (1985) Biochem Soc Trans 13:414–416Google Scholar
  13. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  14. Meixner-Monori B, Kubicek CP, Habison A, Kubicek-Pranz EM, Röhr M (1985) J Bacteriol 161:265–271Google Scholar
  15. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) Gene 61:155–164Google Scholar
  16. Radford A Buxton FP, Newbury SF, Glazebrook JA (1985) In: Timberlake WE (ed) Molecular Genetics of filamentous fungi, UCLA Symp, vol 34. Alan Liss, New York, pp 127–143Google Scholar
  17. Rambosek J, Leach J (1987) CRC Crit Rev Biotechnol 6:357–393Google Scholar
  18. Salovuori J, Makarow M, Rauvala H, Knowles J, Kääirainen L (1987) Bio/Technology 5:152–156Google Scholar
  19. van Hartingsveldt W, Mattrn IE van Zeijl CMJ, Pouwels PH, van den Hondel CAMJJ (1987) Mol Gen Cenet 206:71–75Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. Gruber
    • 1
  • J. Visser
    • 2
  • C. P. Kubicek
    • 1
  • L. H. de Graaff
    • 2
  1. 1.Abt Mikrobielle Biochemie, Institut für Biochemische Technologie und MikrobiologieTU WienWienAustria
  2. 2.Department of GeneticsAgricultural UniversityWageningenThe Netherlands

Personalised recommendations