Chromosoma

, Volume 42, Issue 2, pp 191–203

Location of the genes for 5S ribosomal RNA in Xenopus laevis

  • Mary Lou Pardue
  • Donald D. Brown
  • Max L. Birnstiel
Article

Abstract

In situ hybridization of 5S RNA and cRNA transcribed in vitro from Xenopus laevis 5S DNA shows that 5S DNA is localized at or near the telomere region of the long arm of many, if not all, of the X. laevis chromosomes. No 5S DNA is detected near the nucleolus organizer in the normal X. laevis chromosome complement, but in a X. laevis kidney cell line, 5S DNA is found at the distal end of the secondary constriction. The arrangement of 5S DNA in several types of interphase nuclei is described. — During the pairing stages of meiosis the telomeres of most or perhaps all of the chromosomes become closely associated so that the regions containing 5S DNA form a single cluster. This close association might be either a cause or a result of the presence of the similar sequences of 5S DNA on many telomeres. It suggests that the uniformity of 5S sequences on non-homologous chromosomes might be maintained by crossing-over between the chromosomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloni, Y., Hatlen, L.E., Attardi, G.: Studies of fractionated HeLa cell metaphase chromosomes. II. Chromosomal distribution of sites for transfer RNA and 5S RNA. J. molec. Biol. 56, 555–563 (1971).Google Scholar
  2. Amaldi, F., Buongiorno-Nardelli, M.: Molecular hybridization of Chinese hamster 5S, 4S and “pulse-labeled” RNA in cytological preparations. Exp. Cell Res. 65, 329–334 (1971).Google Scholar
  3. Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol. 63 21–39 (1972).Google Scholar
  4. Brown, D.D., Gurdon J.B.: Absence of ribosomal RNA synthesis in the anucleolate mutant of Xenopus laevis. Proc. nat. Acad. Sci. (Wash.) 51 139–146 (1964).Google Scholar
  5. Brown, D.D., Sugimoto K.: The 5S DNAs of Xenopus laevis and Xenopus mulleri: The evolution of a gene family. J. molec. Biol. (in press 1973).Google Scholar
  6. Brown, D.D. Weber C.S.: Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4S RNA, 5S RNA and ribosomal RNA. J. molec. Biol. 34, 661–680 (1968).Google Scholar
  7. Brown D.D. Wensink, P.C., Jordan, E.: Purification and some characteristics of 5S DNA from Xenopus laevis. Proc. nat. Acad. Sci. (Wash.) 68, 3175–3179 (1971).Google Scholar
  8. Fischberg, M., Wallace, H.: A mutation which reduces nucleolar number in Xenopus laevis. In: The cell nucleus (B. Holmes, ed.). London: Butterworth's Scientific Publications 1960.Google Scholar
  9. Ford, P. J., Southern, E. M.: Different sequences for 5S RNA in kidney cells and ovaries of Xenopus laevis. Nature (Lond.) New Biol. 241, 7–10 (1973).Google Scholar
  10. Gall, J.G., Pardue, M.L.: Nucleic acid hybridization in cytological preparations. In: Methods in enzymology XXI D (L. Grossman and K. Moldave, eds.). New York: Academic Press Inc. 1971.Google Scholar
  11. Hatlen, L., Attardi, G.: Proportion of the HeLa cell genome complementary to transfer RNA and 5S RNA. J. molec. Biol. 56, 535–553 (1971).Google Scholar
  12. Inoué, S., Sato, H.: Arrangement of DNA in living sperm: a biophysical analysis. Science 136, 1122–1124 (1962).Google Scholar
  13. Inoué, S., Sato, H.: Desoxyribonucleic acid arrangement in living sperm. In: Molecular architecture in cell physiology (T. Hayashi and A. G. Szent-Györgi, eds.). Englewood Cliffs, New Jersey: Prentice-Hall 1966.Google Scholar
  14. Kahn, J.: The nucleolar organizer in the mitotic chromosome complement of Xenopus laevis. Quart. J. micr. Sci. 103, 407–409 (1962).Google Scholar
  15. Mikamo, K., Witschi, E.: The mitotic chromosomes in Xenopus laevis (Daudin): normal, sex-reversed and female WW. Cytogenetics 5, 1–19 (1966).Google Scholar
  16. Pardue, M.L., Birnstiel, M.L.: In: Pardue and Gall (1972).Google Scholar
  17. Pardue, M.L., Gall, J.G.: Molecular cytogenetics. In: Molecular genetics and developmental biology. Symp. Soc. Gen. Physiol., Woods Hole, Mass., 1971. (M. Sussman, ed.). Englewood Cliffs, New Jersey: Prentice-Hall 1972.Google Scholar
  18. Pato, M.L., Meyenburg, K. von: Residual RNA synthesis in Escherichia coli after inhibition of transcription by rifampicin. Cold Spr. Harb. Symp. quant. Biol. 35, 497–504 (1970).Google Scholar
  19. Reeder, R.H., Brown, D.D.: Transcription of the ribosomal RNA genes of an amphibian by the RNA polymerase of a bacterium. J. molec. Biol. 51, 171–183 (1970).Google Scholar
  20. Smith, I., Dubnau, D., Morell, P., Marmur, J.: Chromosomal location of DNA base sequences complementary to transfer RNA and to 5S, 16S and 23S ribosomal RNA in Bacillus subtilis. J. molec. Biol. 33, 123–140 (1968).Google Scholar
  21. Steffensen, D.M., Wimber, D.E.: Hybridization of nucleic acids to chromosomes. In: Nucleic acid hybridization in the study of cell differentiation (H. Ursprung, ed.). Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  22. Tartof, K.D., Perry, R.P.: The 5S RNA genes of Drosophila melanogaster. J. molec. Biol. 51, 171–183 (1970).Google Scholar
  23. Taylor, J.H.: The arrangement of chromosomes in the mature sperm of the grasshopper. J. Cell Biol. 21, 286–289 (1964).Google Scholar
  24. Wallace, H., Birnstiel, M.L.: Ribosomal cistrons and the nucleolar organizer, Biochim. biophys. Acta (Amst.) 114, 296–310 (1966).Google Scholar
  25. Wegnez, M., Monier, R., Denis, H.: Sequence heterogeneity in the 5S RNA in Xenopus laevis. FEBS Letters 25, 13–20 (1972).Google Scholar
  26. Weiler, C., Ohno, S.: Cytological confirmation of female heterogamety in the African water frog (Xenopus laevis). Cytogenetics 1, 217–223 (1962).Google Scholar
  27. Wimber, D.E., Steffensen, D.M.: Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science 170, 639–641 (1970).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Mary Lou Pardue
    • 1
    • 2
  • Donald D. Brown
    • 1
    • 2
  • Max L. Birnstiel
    • 1
    • 2
    • 4
  1. 1.Institute of Animal GeneticsUniversity of EdinburghScotland
  2. 2.Carnegie Institute for EmbryologyBaltimoreUSA
  3. 3.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Institut für Molekularbiologie 2Universität ZürichZürichSchweiz

Personalised recommendations