Chromosoma

, Volume 22, Issue 3, pp 294–357 | Cite as

Untersuchungen zur Struktur und Funktion des Lampenbürsten-Y-Chromosoms in der Spermatogenese von Drosophila

  • Wolfgang Hennig
Article

Zusammenfassung

  1. 1.

    Die Strukturdifferenzierungen des Y-Chromosoms in den primären Spermatocyten von Drosophila hydei enthalten nach histochemischen und autoradiographischen Befunden DNS. In bestimmten Bereichen der Y-Strukturen wird RNS synthetisiert. Sie entsprechen damit strukturell und funktionell den Schleifen von Amphibien-Lampenbürstenchromosomen.

     
  2. 2.

    In den Y-Strukturen wird neusynthetisierte RNS angereichert. Diese unterliegt einem Austausch innerhalb von 20 bis 30 Std, obgleich die Y-Strukturen über 120 Std hinweg unverändert bestehen. Vermutlich handelt es sich bei der angereicherten RNS um in situ synthetisiertes Material. Von der nicht-nukleolären RNS-Synthese in den Spermatocytenkernen entfällt etwa 50% auf die autosomale RNS-Synthese.

     
  3. 3.

    Eine Proteinsynthese ist in den Spermatocytenkernen autoradiographisch nicht nachweisbar, obwohl die Y-Strukturdifferenzierungen nach histochemischen Befunden überwiegend aus Proteinen bestehen.

    Nach Inkubation in markierten Aminosäuren kommt es aber zu einer Anreicherung markierter Proteine in den Spermatocytenkernen, die aus dem Nukleolus oder dem Cytoplasma stammen. Auch diese Proteine sind nur für einige Stunden im Kern vorhanden und werden nicht für längere Zeit in den Strukturdifferenzierungen des Y-Chromosoms angereichert. Da man auch nach Langzeitinkubationen bis zu 40 Std keine markierten Y-Strukturen findet, scheinen deren Proteine zum größten Teil nicht-stationär zu sein und einem ständigen Austausch zu unterliegen.

     
  4. 4.

    Aufgrund der Wirkung von Inhibitoren der RNS- und der Proteinsynthese, die zu einem Abbau und unter bestimmten Bedingungen zu einer Neubildung der Y-Strukturen führen, werden die Y-Strukturen als dynamische Strukturen interpretiert, deren Form durch ein Gleichgewicht zwischen dem Abfluß von Material und der Ansammlung neuer Strukturbestandteile aufrecht erhalten wird: Der strukturelle Bestand wird nicht allein durch die RNS-Synthese gewährleistet, auch ein ungestörter Proteinstoffwechsel ist Voraussetzung für die volle Ausbildung der Y-Strukturen.

     
  5. 5.

    Da eine RNS-Synthese nur bis zur Diakinese der I. Reifeteilung autoradiographisch nachweisbar ist, muß Information für die Spermiohistogenese im primären Spermatocytenstadium bereitgestellt werden. Wahrscheinlich liegt diese Information in Form stabiler „messenger“-RNS-Moleküle vor, da markierte RNS sich bis in junge Spermien verfolgen läßt und eine Proteinsynthese während der gesamten Spermiohistogenese abläuft. Die mögliche Bedeutung der Y-Strukturdifferenzierungen in den Spermatocytenkernen für diese Bereitstellung von Information wird diskutiert.

     

Abstract

Incorporation studies with radioactive precursors have shown that the lampbrush-like loops of the Y-chromosome in the spermatocytes of Drosophila hydei contain axial DNA and actively synthesize RNA. Uridin-incorporation, at least in some of the loops, appears to be polarized. In most of the loops, the amount of the label increases with incubation time. Studies of the life cycle of spermatocytes indicate that labeled RNA is stored in the loops for about 20 to 30 hours, while the loops themselves persist for about 120 hours.

Following incubation with labeled amino-acids, an uptake of labeled proteins from the cytoplasm into the nucleus was observed. The labeled nuclear proteins apparently leave the nucleus within a few hours, without long-term binding to the Y-structures, for even a 40-hour-incubation does not result in preferentially labeled Y-structures. These data, along with data on the action of antimetabolites, suggest that the Y-structures are dynamic structures: Their form seems to be maintained by an equilibrium between the accumulation and outflow of matrix material surrounding the DNA axis. The possible role of the functional structures of the Y-chromosome for messenger utilization in the postmeiotic stages of spermiogenesis is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrahamson, S., and E. Friedman: X-ray induced mutations in spermatogonial cells of Drosophila and their dose-frequency relationship. Genetics 49, 357–361 (1964).Google Scholar
  2. Alfert, M., and I. I. Geschwind: A selective staining method for the basic pro- teins of cell nuclei. Proc. nat. Acad. Sci. (Wash.) 39, 991–999 (1953).Google Scholar
  3. Allen, D. W., and P. C. Zamecnik: The effect of puromycin on rabbit reticulocyte ribosomes. Biochem. biophys. Acta (Amst.) 55, 865–874 (1962).Google Scholar
  4. Auerbach, C.: Sensitivity of the Drosophila testis to the mutagenic action of X-rays. Z. indukt. Abstamm. u. Vererb.-L. 86, 113–125 (1954);- Factors influencing the sensitivity of cells: stages in cell cycle and germcell development. Proc. 2nd Intern. Congr. Radiation Res. 1962, p. 152–168. Amsterdam: North-Holland Publ. 1963.Google Scholar
  5. Beermann, W.: Gene action at the level of chromosomes. In: Cell differentiation and morphogenesis, 24–54. Amsterdam: North-Holland Publ. Co. 1966.Google Scholar
  6. —, and G. F. Bahr: The submicroscopic structure of the Balbiani-Ring. Chromosoma (Berl.) 6, 195–201 (1954).Google Scholar
  7. Beermann, W., O. Hess, and G. F. Meyer: Structure and function of the Y heterochromatin in Drosophila. Proc. XVI. Intern. Congr. Zool. Wash. 4, 283–288 (1963); - Les chromosomes plumaux Y au cours de la spermatogénèse de la Drosophila. En: De l'embryologie expérimentale à la biologie moleculaire, ed. E. Wolff. Paris: Dunod 1967.Google Scholar
  8. Bloch, D. P., and S. D. Brack: Evidence for the cytoplasmic synthesis of nuclear histones during spermiogenesis in the grasshopper Chortophaga viridifasciata (De Geer). J. Cell Biol. 22, 327–340 (1964).Google Scholar
  9. Boyd, G. A.: Autoradiography in biology and medicine. New York: Academic Press 1955.Google Scholar
  10. Bridges, C. B.: Non-disjunction as proof of the chromosome theory of heredity. Genetics 1, 1–52, (107–1963) (1916).Google Scholar
  11. Brosseau, G. E.: Genetic analysis of the male fertility factors of Drosophila melanogaster. Genetics 44, 257–274 (1960).Google Scholar
  12. Callan, H. G.: The lampbrush chromosomes of Sepia officinalis L., Anilocra physodes L., and Scyllium catulus Cuv. and their structural relationship to the lampbrush chromosomes of amphibia. Pubbl. Staz. zool. Napoli 29, 329–346 (1957); - The nature of lampbrush chromosomes. Int. Rev. Cytol. 15, 1–34 (1963).Google Scholar
  13. —, and H. C. McGregor: Action of deoxyribonuclease on lampbrush chromosomes. Nature (Lond.) 181, 1479–1480 (1958).Google Scholar
  14. Chandley, A. C., and A. J. Bateman: Timing of spermatogenesis of Drosophila melanogaster using thymidine. Nature (Lond.) 193, 299–300 (1962).Google Scholar
  15. Clayton, F. E.: Absolute and relative frequencies of spermatogenic stages at different pupal periods in Drosophila. J. Morph. 101, 457–476 (1957).Google Scholar
  16. Clever, U.: Actinomycin and puromycin: Effects on sequential gene activation by ecdysone. Science 146, 794–795 (1964).Google Scholar
  17. Cooper, K. W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of „Heterochromatin“. Chromosoma (Berl.) 10, 535–588 (1959).Google Scholar
  18. Davidson, E. H., V. G. Allfrey, and A. E. Mirsky: On the RNA synthesized during the lampbrush phase of amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.) 52, 501–508 (1966).Google Scholar
  19. Demerec, M., and B. P. Kaufmann: Time required for Drosophila males to exhaust the supply of mature sperm. Amer. Naturalist 75, 366–379 (1941).Google Scholar
  20. Duncan, F. N.: Some observations on the biology of the male Drosophila melanogaster. Amer. Naturalist 64, 545–551 (1930).Google Scholar
  21. Ennnis, H. L., and M. Lubin: Cycloheximide: Aspects of inhibition of protein synthesis in mammalian cells. Science 146, 1474–1476 (1964).Google Scholar
  22. Friesen, H.: Spermatogoniales Crossing-over bei Drosophila. Z. indukt. Abstammu. Vererb.-L. 71, 501–526 (1936).Google Scholar
  23. Gall, J. G.: Kinetics of deoxyribonucleic action on chromosomes. Nature (Lond.) 198, 36–38 (1963a);- Chromosomes and cytodifferentiation. In: Cytodifferential and macromolecular synthesis. New York: Academic Press 1963b.Google Scholar
  24. —, and H. G. Callan: 3H-Uridine incorporation in lampbrush chromosomes. Proc. nat. Acad. Sci. (Wash.) 48, 562–570 (1962).Google Scholar
  25. Girard, M., H. Latham, S. Penman, and J. E. Darnell: Entrance of newly formed messenger RNA and ribosomes into HeLa cell cytoplasm. J. molec. Biol. 11, 187–201 (1965).Google Scholar
  26. Goldberg, I. H., M. Rabinowitz, and E. Reich: Basis of actinomycin action, I. DNA-binding and inhibition of RNA-polymerasesynthetic reactions by actinomycin. Proc. nat. Acad. Sci. (Wash.) 48, 2094–2101 (1962); II. Effect of actinomycin on the nucleoside triphosphate-inorganic pyrophosphate exchange. Proc. nat. Acad. Sci. (Wash.) 49, 226–229 (1963a).Google Scholar
  27. —, and E. Reich: Actinomycin inhibition of RNA synthesis directed by DNA. Fed. Proc. 23, 958–964 (1964).Google Scholar
  28. —, and M. Rabinowitz: Inhibition of ribonucleic acid-polymerase reactions by actinomycin and proflavin. Nature (Lond.) 199, 44–46 (1963b).Google Scholar
  29. Geasso, J. A., and J. W. Woodard: The relationship between RNA synthesis and hemoglobin synthesis in amphibian erythropoiesis. Chemical evidence. J. Cell Biol. 31, 279–294 (1966).Google Scholar
  30. Gross, P. R., L. I. Malkin, and W. A. Moyer: Templates for the first proteins of embryonic development. Proc. nat. Acad. Sci. (Wash.) 51, 407–414 (1964).Google Scholar
  31. Hamilton, L. D., W. Fuller, and E. Reich: X-ray diffraction and molecular model building studies of the interaction of actinomycin with nucleic acids. Nature (Lond.) 198, 538–540 (1963).Google Scholar
  32. Hannah-Alava, A.: The premeiotic stages of spermatogenesis. Advanc. Genet. 13, 157–226 (1965).Google Scholar
  33. —, and J. Puro: The brood-pattern of fecundity of D. melanogaster males mated singly and sequentially up to 24 days. D. I. S. 39, 122–124 (1964).Google Scholar
  34. Hanson, F. B., and F. Heys: Duration of the effects of X-rays on male germ cells in Drosophila melanogaster. Amer. Naturalist 63, 511–516 (1929).Google Scholar
  35. Harris, B. B.: The effects of aging of X-rayed males upon mutation frequency in Drosophila. J. Hered. 20, 299–302 (1929).Google Scholar
  36. Hess, O.: Strukturdifferenzierungen im Y-Chromosom von Drosophila hydei und ihre Beziehungen zu Genaktivitäten. I. Mutanten der Funktionsstrukturen. Verh. Dtsch. Zool. Ges. Kiel 1964. Zool. Anz., Suppl. 28, 156–163 (1965);- III. Sequenz und Lokalisation der Schleifenbildungsorte. Chromosoma (Berl.) 16, 222–248 (1965a);- The effect of X-rays on the functional structures of the Y chromosome in spermatocytes of Drosophila hydei. J. Cell Biol. 25, 169–174 (1965b).Google Scholar
  37. —, u. G. F. Meyer: Artspezifische funktionelle Differenzierungen des Y-Heterochromatins bei Drosophila-Arten der D. hydei-Subgruppe. Port. Acta Biol. A, 7, 29–46 (1963a);- Chromosomal differentiations of the lampbrush type formed by the Y chromosome in Drosophila hydei and Drosophila neohydei. J. Cell Biol. 16, 527–539 (1963b).Google Scholar
  38. Ives, P. T.: The effect of gamma-rays on fecundity and mutagenesis in Oregon-R males of Drosophila. Int. J. Radiat. Biol. 2, 54–67 (1960).Google Scholar
  39. Izawa M., V. G. Allfrey, and A. E. Mirsky: The relationship between RNA synthesis and loop structure in lampbrush chromosomes. Proc. nat. Acad. Sci. (Wash.) 49, 544–551 (1963).Google Scholar
  40. Joklik, W. K., and Y. Becker: Studies on the genesis of polyribosomes, I. Origin and significance of the subribosomal particles. J. molec. Biol. 13, 496–510 (1965);- II. The association of nascent messenger RNA with the 40 S subribosomal particle. J. molec. Biol. 13, 511–520 (1965).Google Scholar
  41. Kaplan, W. D., H. D. Gugler, K. K. Kidd, and V. E. Tinderholt: Nonrandom distribution of lethals induced by tritiated thymidine in Drosophila melanogaster. Genetics 49, 701–714 (1964).Google Scholar
  42. —, and J. E. Sisken: Genetic and autoradiographic studies of tritiated thymidine in testes of Drosophila melanogaster. Experientia (Basel) 16, 67–69 (1960).Google Scholar
  43. Kunz, W.: Funktionsstrukturen im Oocytenkern von Locusta migratoria. Chromosoma (Berl.) 20, 332–370 (1967).Google Scholar
  44. Levèvre, G. J., and u. B. Jonsson: Sperm transfer, storage, displacement and utilization in Drosophila melanogaster. Genetics 47, 1719–1736 (1962).Google Scholar
  45. Lüning, K. G.: X-ray-induced dominant lethals in different stages of spermatogenesis in Drosophila. Hereditas (Lund) 38, 91–107 (1952).Google Scholar
  46. Mavor, J. W.: The production of non-disjunction by X-rays. J. exp. Zool. 39, 381–432 (1924).Google Scholar
  47. Meyer, G. F.: The fine structure of spermatocyte nuclei of Drosophila melanogaster. Proc. Eur. Reg. Conf. Electr. Micr. 1960, II, 951–954 (1961); Die Funktionsstrukturen des Y-Chromosoms in den Spermatocytenkernen von Drosophila hydei, D. neohydei, D. repleta und einigen anderen Drosophila-Arten. Chromosoma (Berl.) 14, 207–255 (1963).Google Scholar
  48. —, u. O. Hess: Struktur-Differenzierungen im Y-Chromosom von Drosophila hydei und ihre Beziehungen zu Gen-Aktivitäten, II. Effekt der RNS-Synthese-Hemmung durch Actinomycin. Chromosoma (Berl.) 16, 249–270 (1965).Google Scholar
  49. —, u. W. Beermann: Phasenspezifische Funktionsstrukturen in Spermatocytenkernen von Drosophila melanogaster und ihre Abhängigkeit vom YChromosom. Chromosoma (Berl.) 12, 676–716 (1961).Google Scholar
  50. Monroy, A., R. Maggio, and A. M. Rinaldi: Experimentally induced activation of the ribosomes of unfertilized sea urchin egg. Proc. nat. Acad. Sci. (Wash.) 54, 107–110 (1965).Google Scholar
  51. Neuhaus, M. J.: A cytogenetic study of the Y-chromosome of Drosophila melanogaster. J. Genet. 37, 229–254 (1939).Google Scholar
  52. Olivieri, G., and A. Olivieri: Autoradiographic study of nucleic acid synthesis during spermatogenesis in Drosophila melanogaster. Mutation Res. 2, 366–380 (1965).Google Scholar
  53. Pelling, C.: Ribonucleinsäure-Synthese der Riesenchromosomen. Chromosoma (Berl.) 15, 71–122 (1964).Google Scholar
  54. Puro, J.: Temporal distribution of X-ray-induced recessiv lethals and recombinants in the post-sterile broods of Drosophila melanogaster males. Mutation Res. 1, 268–278 (1964).Google Scholar
  55. Reich, R., R. M. Franklin, A. J. Shatkin, and E. L. Tatum: Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556 (1961); Action of actinomycin D on animal cells and viruses. Proc. nat. Acad. Sci. (Wash.) 48, 1238–1245 (1962).Google Scholar
  56. Ristow, H., and K. Köhler: Polysomal precursors in KB cells I. Biochim. biophys. Acta (Amst.) 123, 265–273 (1966); - Messenger RNA associated with polysomes, ribosomes and subribosomal particles in KB-cells. Biochim. biophys. Acta (Amst.) 142, 65–74 (1967).Google Scholar
  57. Ritossa, F. M., and S. Spiegelman: Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Genetics 53, 737–745 (1965).Google Scholar
  58. Safir, S.: Genetic and cytological examination of the phenomena of primary nondisjunction in Drosophila melanogaster. Genetics 5, 459–487 (1920).Google Scholar
  59. Sapp, W.: The effects of enzymes on the fine structure of lampbrush chromosomes. J. Cell Biol. 31, 159 A (1966).Google Scholar
  60. Scott, R. B., and E. Bell: Control of protein synthesis in development by m-RNA. Science 145, 711–714 (1964).Google Scholar
  61. Shen, T. H.: Zytologische Untersuchungen über Sterilität bei Männchen von Drosophila melanogaster und bei F1-Männchen der Kreuzung zwischen Drosophila simulans-Weibchen und Drosophila melanogaster-Männchen. Z. Zellforsch. 15, 547–580 (1932).Google Scholar
  62. Siegel, M. R., and H. D. Sisler: Inhibition of protein synthesis in vitro by cycloheximide. Nature (Lond.) 200, 675–676 (1963).Google Scholar
  63. Sobels, F. H., and A. D. Tates: Recovery from premutational damage of X-irradiation in Drosophila spermatogenesis. J. cell. Comp. Physiol. 58, Suppl. 1, 189–196 (1961).Google Scholar
  64. Stern, C.: Untersuchungen über Aberrationen des Y-Chromosoms von Drosophila melanogaster. Z. indukt. Abstamm.- u. Vererb.-L. 51, 254–353 (1929).Google Scholar
  65. Vermeulen, C. W., and K. C. Atwood: The proportion of DNA complementary to ribosomal RNA in Drosophila melanogaster. Biochem. biophys. Res. Commun. 19, 221–226 (1965).Google Scholar
  66. Wilt, F.: Regulation of initiation of chick embryo hemoglobin synthesis. J. molec. Biol. 12, 331–341 (1965).Google Scholar
  67. Yarmolinsky, M. B., and G. L. de la Haba: Inhibition by puromycin of aminoacid incorporation into protein. Proc. nat. Acad. Sci. (Wash.) 45, 1721–1729 (1959).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Wolfgang Hennig
    • 1
  1. 1.Abt. BeermannMax-Planck-Institut für BiologieTübingen

Personalised recommendations