, Volume 51, Issue 2, pp 157–182 | Cite as

Electron microscopy of meiosis in Drosophila melanogaster females

I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type
  • Adelaide T. C. Carpenter


Complete reconstruction of the synaptonemal complex in 12 pachytene (defined here as that stage in which the synaptonemal complex is continuous throughout the bivalents) nuclei from one wild-type germarium has permitted the following observations. 1) Drosophila melanogaster bivalents at pachytene exhibit a chromocentral arrangement; the pericentric heterochromatin of all bivalents lies in one region of the nucleus, the chromocenter. Telomeric ends do not appear to abutt the nuclear envelope. 2) Synaptonemal complex is present in the pericentric heterochromatin; however, it is morphologically distinct from that present in the euchromatic portion of the bivalents. 3) Length of the synaptonemal complex of the bivalent arms is greatest at early pachytene; the synaptonemal complex then becomes progressively shorter. Minimum length is approximately one-half of the maximum. 4) Decrease in length of synaptonemal complex is accompanied by an increase in thickness. Reconstruction of 20 pachytene nuclei from an additional 8 germaria suggests that these observations are typical. Correlations between these cytological observations and genetic observations (e.g., patterns of crossing-over) are discussed.


Electron Microscopy Developmental Biology Nuclear Envelope Minimum Length Synaptonemal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, B. S., Carpenter, A. T. C.: Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71, 255–286 (1972)Google Scholar
  2. Baker, B. S., Hall, J. C.: Meiotic mutants: genic control of meiotic recombination and chromosome segregation. In: Genetics and biology of Drosophila, vol. I (E. Novitski and M. Ashburner, eds.). New York: Academic Press (in press)Google Scholar
  3. Carpenter, A. T. C.: Electron microscopy of meiosis in Drosophila melanogaster females. II. The recombination nodule — a recombination-associated structure at pachytene ? Proc. nat. Acad. Sci. (Wash.) (in press, 1975)Google Scholar
  4. Carpenter, A. T. C., Baker, B. S.: Genic control of meiosis and some observations on the synaptonemal complex in Drosophila melanogaster. In: Mechanisms in recombination (R. F. Grell, ed.), p. 365–377. New York: Plenum Press 1974Google Scholar
  5. Carpenter, A. T. C., Sandler, L.: On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics 76, 453–475 (1974)Google Scholar
  6. Cooper, K. W.: Normal spermatogenesis in Drosophila. In: Biology of Drosophila (M. Demerec, ed.), p. 1–61. New York: Wiley & Sons 1950Google Scholar
  7. Dävring, L., Sunner, M.: Female meiosis and embryonic mitosis in Drosophila melanogaster. Hereditas (Lund) 73, 51–64 (1973)Google Scholar
  8. Frasca, J. M., Parks, V. R.: A routine technique for double-staining ultra-thin sections using uranyl and lead salts. J. Cell Biol. 25, 157–161 (1965)Google Scholar
  9. Gillies, C. B.: Reconstruction of the Neurospora crassa pachytene karyotype from serial sections of synaptonemal complexes. Chromosoma (Berl.) 36, 119–130 (1972)Google Scholar
  10. Gillies, C. B.: Ultrastructural analysis of maize pachytene karyotypes by three dimensional reconstruction of the synaptonemal complexes. Chromosoma (Berl.) 43, 145–176 (1973)Google Scholar
  11. Gillies, C. B.: The synaptonemal complex and chromosome structure. Ann. Rev. Genet. 9 (in press, 1975)Google Scholar
  12. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137a-138a (1965)Google Scholar
  13. King, R. C.: Ovarian development in Drosophila melanogaster. New York: Academic Press 1970Google Scholar
  14. King, R. C.: Symposium on reproduction of arthropods of medical and veterinary importance. I. Insect gametogenesis. J. med. Ent. 11, 1–7 (1974)Google Scholar
  15. Koch, E. A., King, R. C.: Further studies on the ring canal system of the ovarian cystocytes of Drosophila melanogaster. Z. Zellforsch. 102, 129–152 (1969)Google Scholar
  16. Koch, E. A., Smith, P. A., King, R. C.: The division and differentiation of Drosophila cystocytes. J. Morph. 121, 55–70 (1967)Google Scholar
  17. Lefevre, G., Jr.: Salivary chromosome bands and the frequency of crossing over in Drosophila melanogaster. Genetics 67, 497–513 (1971)Google Scholar
  18. Lindsley, D. L., Grell, E. H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. 627 (1968)Google Scholar
  19. Mahowald, A. P., Strassheim, J. M.: Intercellular migration of centrioles in the germarium of Drosophila melanogaster. J. Cell Biol. 45, 306–320 (1970)Google Scholar
  20. Moens, P. B.: The structure and function of the synaptonemal complex in Lilium longiflorum sporocytes. Chromosoma (Berl.) 23, 418–451 (1968)Google Scholar
  21. Moens, P. B.: The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma (Berl.) 28, 1–25 (1969)Google Scholar
  22. Moens, P. B., Perkins, F. O.: Chromosome number of a small protist: accurate determination. Science 166, 1289–1291 (1969)Google Scholar
  23. Moses, M. J.: Synaptinemal complex. Ann. Rev. Genet. 2, 363–412 (1968)Google Scholar
  24. Moses, M. J.: Structure and function of the synaptonemal complex. Genetics 61, Suppl. 41–52 (1969)Google Scholar
  25. Moses. M. J., Counce, S. J.: Synaptonemal complex karyotyping in spreads of mammalian spermatocytes. In: Mechanisms in recombination (R. F. Grell, ed.), p. 385–390. New York: Plenum Press 1974Google Scholar
  26. Novitski, E.: An alternative to the distributive pairing hypothesis in Drosophila. Genetics 50, 1449–1451 (1964)Google Scholar
  27. Rasmussen, S. W.: Studies on the development of the synaptinemal complex in Drosophila melanogaster. C. R. Trav. Lab. Carlsberg 39, 443–468 (1974)Google Scholar
  28. Reynolds, D. R.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  29. Roberts, P. A.: Differences in synaptic affinity of chromosome arms as revealed by differential sensitivity to translocation heterozygosity. Genetics 71, 401–415 (1972)Google Scholar
  30. Roth, T. F.: Changes in the synaptinemal complex during meiotic prophase in mosquito oocytes. Protoplasma (Wien) 61, 346–386 (1966)Google Scholar
  31. Ryter, A., Kellenberger, E.: Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucléique. I. Les nucléoides des bactéries en croissance active. Z. Naturforsch. 13b, 597–605 (1958)Google Scholar
  32. Sandler, L., Lindsley, D. L.: Some observations on the study of the genetic control of meiosis in Drosophila melanogaster. Genetics 78, 289–297 (1974)Google Scholar
  33. Sandler, L., Lindsley, D. L., Nicoletti, B., Trippa, G.: Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60, 525–558 (1968)Google Scholar
  34. Smith, P. A., King, R.C.: Studies on fused, a mutant gene producing ovarian tumors in Drosophila melanogaster. J. nat. Cancer Inst. 36, 445–463 (1966)Google Scholar
  35. Westergaard, M., Wettstein, D. von: The synaptinemal complex. Ann. Rev. Genet. 6, 71–110 (1972)Google Scholar
  36. Wettstein, R., Sotelo, J. R.: Electron microscope serial reconstruction of the spermatocyte I nuclei at pachytene. J. Microscopie 6, 557–576 (1967)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Adelaide T. C. Carpenter
    • 1
  1. 1.Department of ZoologyUniversity of WisconsinMadisonUSA

Personalised recommendations