Advertisement

Cell and Tissue Research

, Volume 275, Issue 2, pp 299–308 | Cite as

Octopamine-like immunoreactive neurones in locust genital abdominal ganglia

  • Paul A. Stevenson
  • Hans-Joachim Pflüger
  • Manfred Eckert
  • Jürgen Rapus
Article

Abstract

Using a well characterized anti-serum, the distribution of octopamine-like immunoreactive neurones is described in the locust seventh abdominal (A7) and terminal ganglia (TG), which are associated with genital organs. Apart from 4 paired ventral somata occasionally observed in the TG, all labelled cells could be identified as efferent dorsal- and ventral unpaired median (DUM/VUM) neurones by virtue of the characteristic large size and position of their somata, projections of their primary neurites in DUM-cell tracts, and bifurcating axons which arise from dorsal T-junctions and enter peripheral nerves. For the examined ganglia our data indicate that the whole population of efferent DUM and VUM-cells, defined here as progeny of the segment specific unpaired median neuroblast with peripheral axons, are octopaminergic, and that equal numbers of these cells occur in both sexes: 8 in A7 and 11 in TG. Sex-specific differences are probably restricted to the axonal projections of 5 octopamine-like immunoreactive DUM-somata in A7, and 5 in TG, which in females project into their segment specific sternal nerves, but in males into the genital nerve of the TG. Numerous intersegmentally projecting octopamine-like immunoreactive fibres traverse both ganglia. The majority probably stem from previously described octopamine-like immunoreactive neurones in the thoracic and suboesophageal ganglia.

Key words

Immunocytochemistry Amines, biogenic DUM neurones Sexual dimorphism Locusta migratoria (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agricola H, Hetel W, Penzlin H (1988) Octopamin — Neurotransmitter, Neuromodulator und Neurohormon. Zool Jb Physiol 92:1–45Google Scholar
  2. Agricola H, Schildberger K, Schmidt A, Naumann W, Reißmann S, Huber F, Penzlin H (1992) Imunocytochemical distribution of allatostatin in the nervous system of the cockroach Periplaneta americana. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurones and networks. Proceedings of the 20th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 494Google Scholar
  3. Bate M, Goodman CS, Spitzer NC (1981) Embryonic development of identified neurones: Segment specific differences in the cell homologues. J Neurosci 1:103–106Google Scholar
  4. Bräunig P (1991) Suboesophageal DUM neurons innervate the principal neuropiles of the locust brain. Philos Trans R Soc Lond [Biol] 332:221–240Google Scholar
  5. Doc CD, Goodman CS (1985) Early events in insect neurogenesis I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205Google Scholar
  6. Eckert M, Varanka I, Benedecky I (1989) Proctolinergic innervation of the locust oviduct. Zool Jb Physiol 93:471–479Google Scholar
  7. Eckert M, Rapus J, Nürnberger A, Penzlin H (1992) A new specific antibody reveals octopamine-like immunoreactivity in cockroach ventral nerve cord. J Comp Neurol 322:1–15Google Scholar
  8. Evans PD (1985) Octopamine. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp 499–530Google Scholar
  9. Evans PD, O'Shea M (1978) The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J Exp Biol 73:235–260Google Scholar
  10. Falck B, Hillap N-A, Thieme G, Torp A (1962) Fluorescence of catacholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  11. Ferber M, Pflügr H-J (1990) Bilaterally projecting neurones in pregenital abdominal ganglia of the locust: anatomy and periheral targets. J Comp Neurol 302:447–460Google Scholar
  12. Ferber M, Pflüger H-J (1992) An identified dorsal unpaired median neurone and bilaterally projecting neurones exhibiting bovine pancreatic polypeptide-like/FMRFamide-like immunoreactivity in abdominal ganglia of the migratory locust. Cell Tissue Res 267:85–98Google Scholar
  13. Giebultowicz JM, Truman JW (1984) Sexual differentiation in the terminal ganglion of the moth Manduca sexta: role of sex-specific cell death. J Comp Neurol 226:87–95Google Scholar
  14. Goodman CS (1982) Embryonic development of identified neurones in the grasshopper. In: Spitzer NC (ed) Neuronal development. Plenum Press, New York, pp 171–212Google Scholar
  15. Heckmann R (1988) Die Funktion der Innervierung der Genital-kammer von Acheta domesticus (L). Diplomarbeit, Universität KonstanzGoogle Scholar
  16. Kalogianni E, Pflüger H-J (1992) The identification of motor and unpaired median neurones innervating the locust oviduct. J Exp Biol 168:177–198Google Scholar
  17. Kimura T, Yasuyama K, Yamaguchi T (1989) Proctolinergic innervation of the accessory glands in male crickets (Gryllus bimaculatus): detection of proctolin and some pharmacological properties of myogenically and neurogenically evoked contractions. J Insect Physiol 35:251–264Google Scholar
  18. Kiss T, Varanka I, Benedeczky I (1984) Neuromuscular transmission in the visceral muscle of locust oviduct. Neuroscience 12:309–322Google Scholar
  19. Klemm N (1976) Histochemistry of putative transmitter substances in the insect brain. Prog Neurobiol 7:99–169Google Scholar
  20. Konings PNM, Vullings HGB, Geffard M, Buijs RM, Diederen JHB, Jansen WF (1988) Immunocytochemical demonstration of octopamine-immunoreactive cells in the nervous system of Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 251:371–379Google Scholar
  21. Lange AB, Orchad I (1984) Dorsal unpaired median neurons and ventral bilaterally paired neurones, project to a visceral muscle in an insect. J Neurobiol 15:441–453Google Scholar
  22. Lange AB, Orchard I (1986) Ventral neurons in an abdominal ganglion of the locust Locusta migratoria, with properties similar to dorsal unpaired median neurons. Can J Zool 64:264–267Google Scholar
  23. Nürnberger A, Rapus J, Eckert M, Penzlin H (1990) Taurine-, octopamine-, and proctolin-like immunoreactivity in neurons of the American cockroach Periplaneta americana L. In: Elsner N, Roth G (eds) Brain — perception cognition. Proceedings of the 18th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 490Google Scholar
  24. O'Shea M, Adams ME (1981) Pentapeptide (proctolin) associated with an identified neuron. Science 213:567–569Google Scholar
  25. Orchard I, Lange AB (1985) Evidence for octopaminergic modulation of an insect visceral muscle. J Neurobiol 16:171–181Google Scholar
  26. Orchard I, Lange AB, Cook H, Ramirez J-M (1989) A subpopulation of dorsal unpaired median neurons in the blood-feeding insect Rhodnius prolixus displays serotonin-like immunoreactivity. J Comp Neurol 289:118–128Google Scholar
  27. Pflüger H-J, Watson ADH (1988) Structure and distribution of dorsal unpaired median (DUM) neurones in the abdominal nerve cord of male and female locusts. J Comp Neurol 268:329–345Google Scholar
  28. Pflüger H-J, Witten JL, Levine RB (1993) Fate of abdominal ventral unpaired median (VUM) neurones during metamorphosis of the hawkmoth, Manduca sexta. J Comp Neurol (in press)Google Scholar
  29. Roonwal ML (1937) Studies on the embryology of the African migratory locust, Locusta migratoria migratorioides Reiche and Frm. Philos Trans R Soc [Biol] 227:175–244Google Scholar
  30. Seabrook WD (1968) The innervation of the terminal abdominal segments (VIII–XI) of the desert locust, Schistocerca gregaria. Canadian Entomologist 100:693–715Google Scholar
  31. Spörhase-Eichmann U, Vullings HGB, Buijs RM, Hörner M (1992) Octopamine-immunoreactive neurones in the central nervous system of the cricket Gryllus bimaculatus. Cell Tissue Res 268:287–304Google Scholar
  32. Stevenson PA, Pflüger H-J, Eckert M, Rapus J (1992a) Octopamine immunoreactive cell population in locust thoracic-abdominal nervous system. J Comp Neurol 315:382–397Google Scholar
  33. Stevenson PA, Ferber M, Pflüger H-J (1992b) Co-localisation of octopamine- & FMRFamide/BPP-like immunoreactivity in an identified locust DUM-neurone. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurones and networks. Proceedings of the 20th Göttingen Neurobiology Conference. Thieme, Stuttgart New York p 479Google Scholar
  34. Stoya GM, Agricola H, Eckert M, Penzlin H (1989) Investigations on the innervation of the oviduct muscle of the cockroach, Periplaneta americana (L). Zool Jb Physiol 93:75–86Google Scholar
  35. Thompson KJ (1986) Oviposition digging in the grasshopper 1. Functional anatomy and the motor programme. J Exp Biol 122:387–411Google Scholar
  36. Thompson KJ, Siegler MVS (1989) Properties of the small dorsal unpaired median (DUM) neurons of the grasshopper. Soc Neurosci Abstr 15:1296Google Scholar
  37. Thompson KJ, Siegler MVS (1991) Anatomy and physiology of spiking local and intersegmental interneurons in the median neuroblast lineage of the grasshopper. J Comp Neurol 305:659–675Google Scholar
  38. Thorn RS, Truman JW (1989) Sex-specific neuronal respecification during the metamorphosis of the tobacco hornworm moth Manduca sexta. J Comp Neurol 284:489–503Google Scholar
  39. Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc Lond [Biol] 297:91–123Google Scholar
  40. Watson ADH (1984) The dorsal unpaired median neurons of the locust metathoracic ganglion: neuronal structure and diversity, and synaptic distribution. J Neurocytol 13:303–327Google Scholar
  41. Whim MD, Evans PD (1989) Age-dependence of octopaminergic modulation of flight muscle in the locust. J Comp Physiol [A] 165:125–137Google Scholar
  42. Yamaguchi T, Kushiro N, Waki T (1985) Sexual dimorphism of the terminal abdominal ganglion of the cricket. Naturwis-senschaften 72:153–154Google Scholar
  43. Yasuyama K, Kumura T, Yamaguchi T (1988) Musculature and innervation of the internal reproductive organs in the male cricket, with special reference to the projection of unpaired median neurones of the terminal abdominal ganglion. Zool Sci 5:767–780Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Paul A. Stevenson
    • 1
  • Hans-Joachim Pflüger
    • 1
  • Manfred Eckert
    • 2
  • Jürgen Rapus
    • 2
  1. 1.Institut für NeurobiologieFreie Universität BerlinBerlinGermany
  2. 2.Institut für Allgemeine Zoologie und TierphysiologieFriedrich-Schiller Universität JenaJenaGermany

Personalised recommendations