Probability Theory and Related Fields

, Volume 79, Issue 1, pp 145–164 | Cite as

Wold decomposition, prediction and parameterization of stationary processes with infinite variance

  • A. G. Miamee
  • M. Pourahmadi
Article

Summary

A discrete time stochastic process {Χt} is said to be a p-stationary process (1<p≦2)if \(E\left| {\sum\limits_{k = 1}^n {b_k X_{tk + h} } } \right|^p = E\left| {\sum\limits_{k = 1}^n {b_k X_{tk} } } \right|^p \), for all integers n≧1, t1,...tn,h and scalars b1,...bn.The class of p-stationary processes includes the class of second-order weakly stationary stochastic processes, harmonizable stable processes of order α (1<α≦2), and pthorder strictly stationary processes. For any nondeterministic process in this class a finite Wold decomposition (moving average representation) and a finite predictive decomposition (autoregressive representation) are given without alluding to any notion of “covariance” or “spectrum”. These decompositions produce two unique (interrelated) sequences of scalar which are used as parameters of the process {Χt}. It is shown that the finite Wold and predictive decomposition are all that one needs in developing a Kolmogorov-Wiener type prediction theory for such processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutowicz, E.J.: On an explicit formula in linear least squares prediction. Math. Scand. 5, 261–266 (1957)Google Scholar
  2. 2.
    Bhansali, R.J.: Order determination for process with infinite variance. In: Franke, J., Härdle, W., Martin, D. (eds.) Robust and nonlinear time series analysis. (Lect. Not. Statist., vol. 26) Berlin Heidelberg New York Tokyo: Springer 1984Google Scholar
  3. 3.
    Cambanis, S., Soltani, A.R.: Prediction of stable processes: Spectral and moving average representations. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 593–612 (1984)Google Scholar
  4. 4.
    Cambanis, S., Miamee, A.G.: On prediction of harmonizable stable processes. Sakhya (to appear)Google Scholar
  5. 5.
    Cambanis, S., Hardin, C.D., Weron, A.: Innovations and Wold decompositions of stable processes. Probab. Th. Rel. Fields 79, 1–27 (1988)Google Scholar
  6. 6.
    Cline, D.B.H., Brockwell, P.J.: Linear prediction of ARMA processes with infinite variance. Stochastic Proc. Appl. 19, 281–296 (1985)Google Scholar
  7. 7.
    Hannan, E.J., Kanter, M.: Autoregressive process with infinite variance. J. Appl. Probab. 14, 411–415 (1977)Google Scholar
  8. 8.
    Hall, P, Heyde, C.C.: Martingale limit theory and its application. New York: Academic Press (1980)Google Scholar
  9. 9.
    Hosoya, Y.: Harmonizable stable processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 60, 517–533 (1982)Google Scholar
  10. 10.
    Kolmogorov, A.N.: Stationary seqzences in Hilbert space. Bull. Math. Univ. Moscow, 2, 1–40 (1941)Google Scholar
  11. 11.
    Masani, P.R.: The prediction theory of multivariate stochastic processes; III. Acta Math. 104, 141–162 (1960)Google Scholar
  12. 12.
    Masani, P.R.: Recent trends in multivariate prediction theory. In: Krishnaiah, P.R. (eds) Multivariate analysis, pp. 351–382. New York: Academic Press 1966Google Scholar
  13. 13.
    Miamee, A.G., Salehi, H.: On an explicit representation of the linear predictor of a weakly stationary stochastic sequence. Boletin de la Sociedad Matematica Mexicana, 28, 81–93 (1983)Google Scholar
  14. 14.
    Pourahmadi, M.: On minimality and interpolation of harmonizable stable processes. SIAM J. Appl. Math. 44, 1023–1030 (1984)Google Scholar
  15. 15.
    Pourahmadi, M.: A matricial extension of the Helson-Szego theorem and its application in multivariate prediction. J. Multivariate Anat. 16, 265–275 (1985)Google Scholar
  16. 16.
    Pourahmadi, M.: Autoregressive representations of multivariate stationary stochastic processes. Prob. Th. Rel. Fields (To appear)Google Scholar
  17. 17.
    Rozanov, Yu.A.: Stationary random processes. San Francisco: Holden-Day 1967Google Scholar
  18. 18.
    Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces. Berlin Heidelberg New York: Springer 1970Google Scholar
  19. 19.
    Urbanik, K.: Harmonizable sequences of random variables. Colloques Internationaux du C.N.R.S. 186, 345–361 (1970)Google Scholar
  20. 20.
    Weron, A.: Harmonizable stable processes on groups: Spectral, ergodic and interpolation properties. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 473–491 (1985)Google Scholar
  21. 21.
    Wiener, N., Masani, P.R.: The prediction theory of multivariate stochastic processes. Part I.: Acta Math. 98, 111–150: part II. Acta Math. 99, 93–137 (1958)Google Scholar
  22. 22.
    Wold, H.: A study in the analysis of stationary time series. Stockholm: Almquist & Wiksell 1954Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. G. Miamee
    • 1
  • M. Pourahmadi
    • 1
  1. 1.Department of Mathematical SciencesNorthern Illinois UniversityDeKalbUSA

Personalised recommendations