Probability Theory and Related Fields

, Volume 79, Issue 4, pp 543–623 | Cite as

Brownian motion on the Sierpinski gasket

  • Martin T. Barlow
  • Edwin A. Perkins


We construct a “Brownian motion” taking values in the Sierpinski gasket, a fractal subset of ℝ2, and study its properties. This is a diffusion process characterized by local isotropy and homogeneity properties. We show, for example, that the process has a continuous symmetric transition density, pt(x,y), with respect to an appropriate Hausdorff measure and obtain estimates on pt(x,y).


Stochastic Process Brownian Motion Probability Theory Diffusion Process Statistical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asmussen, S., Hering, H.: Branching processes. Boston: Birkhauser 1983Google Scholar
  2. Banavar, J.R., Willemsen, J.F.: Probability density for diffusion on fractals. Phys. Rev. B 30, 6778–6779 (1984)Google Scholar
  3. Barlow, M.T.: Continuity of local times for Lévy processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 69, 23–35 (1985)Google Scholar
  4. Barlow, M.T., Bass, R.F.: Construction of Brownian motion on the Sierpinski carpet. Preprint (1987)Google Scholar
  5. Bingham, N.H.: On the limit of a supercritical branching process. J. Appl. Probab. (in press)Google Scholar
  6. Blumenthal, R.M., Getoor, R.K.: Local times for Markov processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 50–74 (1963)Google Scholar
  7. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York: Academic 1968Google Scholar
  8. Breiman, L.: Probability. Reading, Massachusetts: Addison-Wesley 1968Google Scholar
  9. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Nouv. Ser., Sect. B 23, 245–287 (1987)Google Scholar
  10. Chacon, R.V., Le Jan, Y., Perkins, E., Taylor, S.J.: Generalised arc length for Brownian motion and Lévy processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 197–211 (1981)Google Scholar
  11. Davis, M.H.A., Varaiya, P.: The multiplicity of an increasing family of σ-fields. Ann. Probab. 2, 958–963 (1974)Google Scholar
  12. Dubuc, S.: Problèmes relatifs a l'itération de fonctions suggerés par les processus en cascade. Ann. Inst. Fourier 21, 171–251 (1971)Google Scholar
  13. Dubuc, S.: Etude théorique et numérique de la fonction de Karlin-McGregor. J. Anal. Math. 42, 15–37 (1982)Google Scholar
  14. Eggleston, H.G.: On closest packing by equilateral triangles. Math. Proc. Camb. Philos. Soc. 49, 26–30 (1953)Google Scholar
  15. Fabes, E.B., Stroock, D.W.: A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96, 328–338 (1986)Google Scholar
  16. Feller, W.: An introduction to probability theory and its applications, vol. II, 2nd edn. New York: Wiley 1971Google Scholar
  17. Fristedt, B.E., Pruitt, W.E.: Lower functions for increasing random walks and subordinators. Z. Wahrscheinlichkeitstheor. Verw. Geb. 18, 167–182 (1971)Google Scholar
  18. Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam: North-Holland/Kodansha 1980Google Scholar
  19. Garsia, A.M.: Continuity properties of multi-dimensional Gaussian processes. 6th Berkeley Symposium on Math. In: Statistical probability, vol. 2, pp. 369–374. Berkeley: University of California Press 1970Google Scholar
  20. Getoor, R-K-. Kesten, H.: Continuity of local times of Markov processes. Comp. Math. 24, 277–303 (1972)Google Scholar
  21. Goldstein, S.: Random walks and diffusions on fractals. In: Kesten, H. (ed.) Percolation theory and ergodic theory of infinite particle systems. IMA vol. Math Appl. 8, 121–128. New York Berlin Heidelberg: Springer 1987Google Scholar
  22. Guyer, R.A.: Diffusive motion on a fractal; G nm(t). Phys. Rev. A 32, 2324–2335 (1985)Google Scholar
  23. de Haan, L., Stadtmuller, U.: Dominated variation and related concepts and Tauberian theorems for Laplace transforms. J. Math. Anal. Appl. 108, 344–365 (1985)Google Scholar
  24. Harris, T.E.: Branching processes. Ann. Math. Stat. 19, 474–494 (1948)Google Scholar
  25. Harris, T.E.: The theory of branching processes. Berlin Heidelberg: Springer 1963Google Scholar
  26. Itô, K., McKean Jr., H.P.: Diffusion processes and their sample paths. Berlin Heidelberg: Springer 1965Google Scholar
  27. Kesten, H.: Subdiffusive behaviour of random walk on a random cluster. Ann. Inst. H. Poincaré Nouv. Ser., Sect. B 22, 425–487 (1986)Google Scholar
  28. Knight, F.B.: Essentials of Brownian motion and diffusion. AMS Math. Surveys vol. 18. Providence, Rhode Island: AMS 1981Google Scholar
  29. Kusuoka, S.: A diffusion process on a fractal. In: Itô, K., Ikeda, N. (eds.) Probabilistic methods in mathematical physics. Proceedings Taniguchi Symposium, Katata 1985. Amsterdam: Kino Kuniya-North Holland 1987. pp. 251–274Google Scholar
  30. Meyer, P.A.: Un cours sur les intégrales stochastiques. In: Meyer, P.A. (ed.) Seminaire de probabilités X. (Lect. Notes Math., vol. 511, pp. 175–183) Berlin Heidelberg New York: Springer 1976Google Scholar
  31. O'Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32, 3073–3083 (1985)Google Scholar
  32. Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J- Physique Lettres 44, L13-L22 (1983)Google Scholar
  33. Riesz, F., Sz.-Nagy, B. Lecons d'analyse fonctionelle. Budapest: Academy of Science, Hungary 1952Google Scholar
  34. Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: Springer 1979Google Scholar
  35. Salisbury, T.S.: An increasing diffusion. Proceedings, seminar on stochastic processes, 1984, pp. 173–194. Boston: Birkhäuser 1986Google Scholar
  36. Sierpinski, W.: Sur une courbe dont tout point est un point de ramification. C.R. Acad. Sci. Paris 160, 302–305 (1915)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Martin T. Barlow
    • 1
  • Edwin A. Perkins
    • 2
  1. 1.Statistical LaboratoryCambridgeUK
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations