Advertisement

Cell and Tissue Research

, Volume 260, Issue 2, pp 349–354 | Cite as

GABA-like immunoreactivity in a common inhibitory neuron of the antennal motor system of crickets

  • Hans-Willi Honegger
  • Beate Brunninger
  • Peter Bräunig
  • Karoly Elekes
Article

Summary

In crickets, a deutocerebral motoneuron sends axon collaterals to 6 of the 7 antennal muscles. Previous results indicated that this neuron exerts inhibition on these muscles and thus may be a common inhibitory motoneuron. In our present study, we show by doublelabelling, i.e. retrograde cobalt-filling and GABA-immunocytochemistry, that this neuron is GABA-immunoreactive, thus demonstrating that one common inhibitory motoneuron is part of the antennal motor system of crickets.

Key words

Antennae Motoneurons Immunocytochemistry Cobalt labelling GABA Gryllus bimaculatus (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballantyne D, Rathmayer W (1981) On the function of the common inhibitory neurone in the walking legs of the crab, Eriphia spinifrons. J Comp Physiol 143:111–122Google Scholar
  2. Bauer CK (1987) The deutocerebrum as the motor center of the locust brain. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research. Thieme, Stuttgart, p 77Google Scholar
  3. Burrows M (1973) Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J Comp Physiol 82:59–78Google Scholar
  4. Clarac F, Vedel JP (1975) Neurophysiological study of the antennal motor patterns in the rock lobster Palinurus vulgaris. J Comp Physiol 102:201–221Google Scholar
  5. Distler P (1989) Histochemical demonstration of GABA-like immunoreactivity in cobalt labeled neuron individuals in the insect olfactory pathway. Histochemistry 91:245–249Google Scholar
  6. Hale JP, Burrows M (1985) Innervation patterns of inhibitory motor neurones in the thorax of the locust. J Exp Biol 117:401–413Google Scholar
  7. Honegger H-W (1981) A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets. J Comp Physiol 142:419–421Google Scholar
  8. Honegger H-W, Altman JS, Kien J, Müller-Tautz R, Pollerberg E (1984) A comparative study of neck muscle motor neurons in a cricket and a locust. J Comp Neurol 230:517–535Google Scholar
  9. Honegger H-W, Allgäuer C, Klepsch U, Welker J (1990) The morphology of antennal motoneurons in the brain of two crickets, Gryllus bimaculatus and Gryllus campestris. J Comp Neurol 291:256–268Google Scholar
  10. Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antenal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244:243–252Google Scholar
  11. Kammerer R, Bauer W, Honegger H-W (1987) On-line analysis of rapid motion with a microcomputer. J Neurosci Methods 19:89–94Google Scholar
  12. Pearson KG, Fourtner CR (1973) Identification of the somata of common inhibitory motoneurones in the metathoracic ganglion of the cockroach. Can J Zool 51:859–866Google Scholar
  13. Robertson RM, Wisniowski L (1988) GABA-like immunoreactivity of identified interneurons in the flight systems of the locust, Locusta migratoria. Cell Tissue Res 254:331–340Google Scholar
  14. Sandeman D, Wilkens LA (1983) Motor control of movements of the antennal flagellum in the Australian crayfish, Euastacus armatus. J Exp Biol 105:253–273Google Scholar
  15. Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 216:287–300Google Scholar
  16. Seguela P, Geffard M, Buijs RM, Le Moal M (1984) Antibodies against γ-aminobutyric acid: Specificity studies and immunocytochemical results. Proc Natl Acad Sci USA 81:3888–3892Google Scholar
  17. Shepheard P (1974) Control of head movement in locust Schistocerca gregaria. J Exp Biol 60:735–767Google Scholar
  18. Sternberger LA (1979) Immunocytochemistry. Wiley, New YorkGoogle Scholar
  19. Tyrer NM, Bell EM (1974) The intensification of cobalt-filled neuron profiles using a modification of Timm's sulfide-silver method. Brain Res 73:151–155Google Scholar
  20. Usherwood PNR, Runion HI (1970) Analysis of the mechanical responses of metathoracic extensor tibiae muscles of free-walking locusts. J Exp Biol 52:39–58Google Scholar
  21. Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol [A] 161:23–32Google Scholar
  22. Watson AHD (1986) The distribution of GABA-like immunoreactivity in the thoracic nervous system of the locust Schistocerca gregaria. Cell Tissue Res 246:331–341Google Scholar
  23. Watson AHD, Burrows M (1987) Immunocytochemical and pharmacological evidence for GABAergic spiking local interneurons in the locust. J Neurosci 7:1741–1751Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Hans-Willi Honegger
    • 1
  • Beate Brunninger
    • 1
  • Peter Bräunig
    • 1
  • Karoly Elekes
    • 2
  1. 1.Institut für ZoologieTechnische Universität MünchenGarchingGermany
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary

Personalised recommendations