Cell and Tissue Research

, Volume 271, Issue 2, pp 341–350 | Cite as

Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus

I. Ventricular zone cell proliferation
  • Vladimir K. Chetverukhin
  • Andrey L. Polenov
Article

Abstract

The localization and fine structure of proliferating cells in the hypothalamic preoptic area were studied by light-and electron-microscopic radioautography 1–2 h following single application of 3H-thymidine to adult Rana temporaria taken from their natural habitat in the spring and autumn. 3H-thymidine uptake by proliferating cells was much more pronounced in frogs caught in May/June, i.e., a month after the breeding period (labeled cells represent about 10% of the total ventricular zone cell population), compared to animals caught in mid-September, when it was very low. In both 3H-thymidine treatment groups the vast majority of labeled cells are found exclusively within the preoptic recess ventricular zone. With regard to ultrastructure, it contained proliferating cells of at least 4 types, ranging from immature forms (bipolar stem cells) to more differentiated elements (tanycyte-like ependymoblasts, “classical” ependymoblasts). All of them showed label over their nuclei indicating that these cells are capable of DNA synthesis and mitosis. The possible role of the preoptic recess ventricular zone as a source of precursor cells for new peptidergic neurosecretory cells, conventional neurons and glial cells in the hypothalamic preoptic area of the adult frog is discussed.

Key words

Hypothalamic preoptic area Ventricular zone Proliferating cells 3H-thymidine light and electron microscopic radioautography Rana temporaria (Anura) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov VY (1985) Cell reactivity and proteins. Nauka, LeningradGoogle Scholar
  2. Altman J (1970) Postnatal neurogenesis and the problem of neural plasticity. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 197–237Google Scholar
  3. Alvarez-Buylla A, Buskirk DR, Nottebohm F (1987) Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 264:159–170Google Scholar
  4. Andronnikov B (1965) Heat resistance of sexual cells and embryons of poikilothermic animals. In: Poliansky YI, Ushakov BP (eds) Heat resistance of cells in animals. Nauka, Moscow Leningrad, pp 125–139Google Scholar
  5. Baserga R (1965) The relationship of the cell cycle to tumor growth and control of cell division: a review. Cancer Res 25:581–595Google Scholar
  6. Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892Google Scholar
  7. Belenky MA, Chetverukhin VK, Polenov AL (1973) The hypothalamo-hypophysial system of the frog Rana temporaria. I. Morphometric analysis of functional states of the median eminence. Gen Comp Endocrinol 21:241–249Google Scholar
  8. Bernocchi G, Scherini E, Mareš V (1986) Autoradiographic study of DNA synthesis in the brain of adult frogs. In: Tuček S, Štipek S, Štástny F, Křivánek J (eds) Molecular basis of neuronal function (abstract). ESN General Meeting. Prague, p 385Google Scholar
  9. Birse SC, Leonard RB, Coggeshall RE (1980) Neuronal increase in various areas of the nervous system of the guppy, Lebistes. J Comp Neurol 194:291–301Google Scholar
  10. Bok D, Hall MO (1971) The role of pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682Google Scholar
  11. Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262Google Scholar
  12. Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of literature. Brain Res Rev 9:1–19Google Scholar
  13. Chetverukhin VK (1973) Radioautographic study of histogenesis of the preoptic nucleus in Rana temporaria. Arch Anat Histol Embryol 65:60–70Google Scholar
  14. Chetverukhin VK (1978) Role of the preoptic recess ependyma in the formation and physiologic regeneration of the nucleus praeopticus in amphibians. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 145–151Google Scholar
  15. Chetverukhin VK, Polenov AL (1985) Radioautographic investigation of neuro-and gliogenesis in the preoptic hypothalamic region of adult frog, Rana temporaria L., with special reference to physiologic regeneration of preoptic nucleus. In: Polenov AL (ed) Proc IBRO Symposium on neuroendocrinology. Leningard, p 35Google Scholar
  16. Cleaver JE (1967) Thymidine metabolism and cell kinetics. North-Holland, AmsterdamGoogle Scholar
  17. Easter SS (1983) Postnatal neurogenesis and changing connections. Trends Neurosci 6:53–56Google Scholar
  18. Fasolo A, Franzoni MF (1974) A Golgi study on tanycytes and liquor-contacting cells in the posterior hypothalamus of the newt. Cell Tissue Res 154:151–166Google Scholar
  19. Flament-Durand J, Brion JP (1985) Tanycytes: morphology and functions. A review. Int Rev Cytol 96:121–155Google Scholar
  20. Fujita S (1962) Selective labeling of cell groups and its application to cell identification. Exp Cell Res 28:158–161Google Scholar
  21. Fujita S (1966) Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 180–196Google Scholar
  22. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394Google Scholar
  23. Goldspink DF, Goldberg AL (1973) Problems in the use of /Me-3H/-thymidine for the measurement of DNA synthesis. Biochem Biophys Acta 299:521–532Google Scholar
  24. Grieder A, Odartchenko N, Cottier H, Cronkite EP, Schindler R (1970) Specificity of tritiated thymidine as a precursor of DNA under conditions of prolonged administration. Proc Soc Exp Biol Med 134:1026–1029Google Scholar
  25. Grosset L, Odartchenko N (1975) Relationships between cell cycle duration, S-period and nuclear DNA content in erythroblasts of four vertebrate species. Cell Tissue Kinet 8:81–90Google Scholar
  26. Horstmann E (1954) Die Faserglia des Selachiergehirns. Z Zellforsch 39:588–617Google Scholar
  27. Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094Google Scholar
  28. Kirsche W (1967) Über postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehre. Z Mikrosk-anat Forsch 77:313–406Google Scholar
  29. Korr H, Schultze B, Maurer W (1975) Autoradiographic investigations of glial proliferation in the brain of adult mice. II. Cycle time and mode of proliferation of neuroglia and endothelial cells. J Comp Neurol 160:477–490Google Scholar
  30. Kranz D, Richter W (1970) Autoradiographische Untersuchungen über die Lokalisation der Matrixzonen des Diencephalons von juvenilen und aduten Lebistes reticulatus (Teleostei). Z Mikrosk-anat Forsch 82:42–66Google Scholar
  31. Larra F, Droz B (1970) Techniques radioautographiques et leur application à l'étude du renouvellement des constituants cellulaires. J Microsc 9:845–880Google Scholar
  32. Leonard RB, Coggeshall RE, Willis WD (1978) A documentation of an age related increase in neuronal and axonal numbers in the stingray, Dasyatis sabine, Leseur. J Comp Neurol 179:13–21Google Scholar
  33. Leonhardt H (1972) Elektronenmikroskopische Untersuchung der postembryonalen ventralen Matrixzone des Kaninchengehirns. Z Mikrosk-anat Forsch 85:161–175Google Scholar
  34. Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 43:167–174Google Scholar
  35. Minelli G, Del Grande P, Franceschini V (1982) Uptake of 6-H3-thymidine in the normal and regenerating CNS of Rana esculenta. Z Mikrosk-anat Forsch 96:201–213Google Scholar
  36. Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–80Google Scholar
  37. Nottebohm F (1985) Neuronal replacement in adulthood. In: Nottebolm F (ed) Hope for a new neurology. Ann NY Acad Sci 457:143–161Google Scholar
  38. Paton JA, Nottebohm F (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048Google Scholar
  39. Paul E (1967) Über die Typen der Ependymzellen und ihre regionale Verteilung bei Rana temporaria L. Z Zellforsch 80:461–487Google Scholar
  40. Pelc SR (1972) Metabolic DNA in ciliated Protozoa, salivary gland chromosomes and mammalian cells. Int Rev Cytol 32:327–355Google Scholar
  41. Polenov AL (1954) On the physiological degeneration and restoration of the neurosecretory cells of the nucleus praeopticus in sazan and the mirror carp. Dokl Akad Nauk SSSR 99:625–628Google Scholar
  42. Polenov AL (1956) On the physiological degeneration and restoration of the neurosecretory cells of nucleus lateralis tuberis in sazan, mirror carp, and bream. Dokl Akad Nauk SSSR 107:163–166Google Scholar
  43. Polenov AL (1968) Hypothalamic neurosecretion. Nauka, LeningradGoogle Scholar
  44. Polenov AL (1974) On the life way and secretory cycle of hypothalamic neurosecretory cells. Arch Anat Histol Embryol 67:5–19Google Scholar
  45. Polenov AL, Chetverukhin VK (1993) Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. II. Types of neuronal cells produced. Cell Tissue Res 271:351–362Google Scholar
  46. Polenov AL, Chetverukhin VK, Jakovleva IV (1972) The role of ependyma of the recessus praeopticus in formation and physiological regeneration of the nucleus praeopticus in lower vertebrates. Z Mikrosk-anat Forsch 85:513–532Google Scholar
  47. Privat A, Leblond CP (1972) The subependymal layer and neighbouring region in the brain of the young rat. J Comp Neurol 146:277–302Google Scholar
  48. Scharrer B (1978) Current concepts on the evolution of the neurosecretory neuron. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 9–14Google Scholar
  49. Schultze B, Hörning N, Maurer W (1972) Blut-Hirn-Schranke und Placentar-Schranke für 3H-Thymidin und 3H-Cytidin bei der Maus (Untersuchung mit Ganzkörper-Autoradiographie). Z Naturforsch 276:554–558Google Scholar
  50. Sidman RL (1970) Autoradiographic methods and principles for study of nervous system with thymidine-H3. In: Ebbesson SOE, Nauta WJH (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 252–274Google Scholar
  51. Sidman RL, Miale IL, Feder N (1959) Cell proliferation in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333Google Scholar
  52. Skoff RP, Price DL, Stocks A (1976) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation. J Comp Neurol 169:291–312Google Scholar
  53. Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 116:325–347Google Scholar
  54. Tennyson VM (1970) The fine structure of the developing nervous system. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 47–116Google Scholar
  55. Vaughn JE, Peters A (1968) A third neuroglial cell type. An electron microscopic study. J Comp Neurol 133:269–288Google Scholar
  56. Yamada T, Roesel ME (1968) Labeling of lens regenerate cells grafted into the newt optic chamber. A study of availability time of tritiated thymidine. Exp Cell Res 50:649–652Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Vladimir K. Chetverukhin
    • 1
  • Andrey L. Polenov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations