Advertisement

Cell and Tissue Research

, Volume 271, Issue 2, pp 309–316 | Cite as

Seasonal changes in the hypothalamic vasopressinergic system of a wild Sahelian rodent, Taterillus petteri

  • Frédéric Fuminier
  • Bruno Sicard
  • Line Boissin-Agasse
  • Jean Boissin
Article

Abstract

Seasonal variations in the immunoreactivity of vasopressinergic perikarya in the paraventricular (PVN), supraoptic (SON) and suprachiasmatic nuclei (SCN), and in the labelling of vasopressinergic fibres in the internal zone of the median eminence were studied in Taterillus petteri, a rodent that is found in the north Burkina Faso (formerly Upper Volta). In this region, there are four seasonal climatic combinations: the humid and hot, humid and cold, dry and cold, and dry and hot seasons. In the dry hot season, the rodents experience phases of torpor (adaptation to dryness). Immunoreactivity of the PVN and SON is highest during the dry cold season. Labelling is intense during the dry hot and humid hot seasons, and is at its lowest during the humid cold season. In the SCN, labelling of the perikarya is only dense during the dry hot season, whereas for the rest of the year, the immunoreactivity is weak or undetectable. The pattern of immunoreactive variations of vasopressin-positive fibres located in the internal zone of the median eminence is similar to those of vasopressinergic perikarya in the PVN and SON. These results suggest that there is an association between: (1) seasonal modifications in the immunoreactivity of PVN and SON vasopressinergic perikarya and vasopressinergic fibres of the internal median eminence, and (2) climatic conditions, water metabolism, behavioural activity and diet. It is not possible to establish a correlation between seasonal variations in water availability and fluctuations in the labelling of vasopressinergic perikarya in the SCN. However, labelling is intense when the animals are in torpor during the dry hot season.

Key words

Vasopressinergic system Paraventricular nucleus Supraoptic nucleus Suprachiasmatic nucleus Median eminence Immunohistochemistry, semiquantitative Aestivation Lethargy Taterillus petteri (Rodentia) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso G (1988) Effects of colchicine on the intraneuronal transport of secretory material prior to the axon: a morphofunctional study in hypothalamic neurosecretory neurons of the rat. Brain Res 453:191–203Google Scholar
  2. Boissin-Agasse L, Alonso G, Roch G, Boissin J (1988) Peptidergic neurohormonal systems in the basal hypothalamus of the ferret and the mink: immunocytochemical study of variations during the annual reproductive cycle. Cell Tissue Res 251:153–159Google Scholar
  3. Boissin-Agasse L, Tappaz M, Roch G, Gril C, Boissin J (1991) Morphofunctional evidence for the involvement of hypothalamic dopaminergic and GABAergic neurons in the mechanisms of photoperiod-dependent prolactin release in the mink. Neuroendocrinology 53:537–542Google Scholar
  4. Bradshaw SD, Cheniti T, Lachiver F (1976) Taux de renouvellement d'eau et balance hydrique chez deux rongeurs désertiques, Meriones shawii et Meriones libycus, étudiés dans leur environment naturel en Tunisie. CR Acad Sci III 282:481–484Google Scholar
  5. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat: pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435Google Scholar
  6. Buijs RM (1990) Vasopressin and oxytocin localization and putative functions in the brain. Acta Neurochir (Wien) [Suppl] 47:86–89Google Scholar
  7. Buijs RM, Pévet P, Masson-Pévet M, Pool CW, De Vries GJ, Canguilhem B, Vivien-Roels B (1986) Seasonal variation in vasopressin innervation in the brain of the European hamster (Cricetus cricetus). Brain Res 371:193–196Google Scholar
  8. Carter DA, Murphy D (1989) Cyclic nucleotide dynamics in the rat hypothalamus during osmotic stimulation: in vivo and in vitro studies. Brain Res 487:350–356Google Scholar
  9. De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain; with special reference to the lateral septum. Brain Res 273:307–317Google Scholar
  10. Dreifuss JJ (1989) La vasopressine et l'ocytocine en tant que neuromédiateurs. Arch Int Physiol Biochem 97:A1-A14Google Scholar
  11. Grenot C, Serrano V (1979) Vitesse de renouvellement d'eau chez cinq espèces de rongeurs déserticoles et sympatriques étudiés à la saison sèche dans leur milieu naturel (désert de Chihuahua, Mexique). CR Acad Sci [III] 288:1227–1230Google Scholar
  12. Hawthorn J, Ang VTY, Jenkins JS (1985) Effects of lesions in the hypothalamic paraventricular, supraoptic and suprachiasmatic nuclei on vasopressin and oxytocin in rat brain and spinal cord. Brain Res 346:51–57Google Scholar
  13. Hermes MLHJ, Buijs RM, Masson-Pévet M, Woud TP van der, Pévet P, Brenklé R, Kirsch R (1989) Central vasopressin infusion prevents hibernation in the European hamster (Cricetus cricetus). Proc Natl Acad Sci USA 86:6408–6411Google Scholar
  14. Hermes MLHJ, Buijs RM, Masson-Pévet M, Pévet P (1990) Seasonal changes in vasopressin in the brain of the garden dormouse (Elyomis quercinus L.). J Comp Neurol 293:340–346Google Scholar
  15. Lang RE, Heil J, Ganten D, Hermann K, Rascher W, Unger T (1983) Effects of lesions in the paraventricular nucleus of the hypothalamus on vasopressin and oxytocin contents in rat brainstem and spinal cord of rat. Brain Res 260:326–329Google Scholar
  16. Majzoub JA, Carrazana EJ, Shulman JS, Baker KJ, Emanuel RL (1987) Defective regulation of vasopressin gene in Brattleboro rats. Am J Physiol 252:E 637-E 642Google Scholar
  17. Ouarour A (1991) Analyse des mécanismes nerveux et endocrines impliqués dans le contrôle de la torpeur diurne chez le hamster sibérien. Thèse Univ Louis-Pasteur, StrasbourgGoogle Scholar
  18. Pévet P, Masson-Pévet M, Hermes MLHJ, Buijs RM, Canguilhem B (1989) Photoperiod, pineal gland, vasopressinergic innervation and timing of hibernation. In: Malan A, Canguilhem B (eds) Living in the cold, vol II. Coll. INSERM/John Libbey Eurotext, London Paris, pp 43–51Google Scholar
  19. Schindler CU, Nürnberger F (1990) Hibernation-related changes in the immunoreactivity of neuropeptide systems in the suprachiasmatic nucleus of the ground squirrel, Spermophilus richardsonii. Cell Tissue Res 262:293–300Google Scholar
  20. Schmidt-Nielsen K, Haines HB (1964) Water balance in a carnivorous rodent, the grasshopper mouse. Physiol Zool 37:259–265Google Scholar
  21. Sicard B (1987) Mécanismes écologiques et physiologiques de régulation des variations régulières et irrégulières de l'abondance des rongeurs du Sahel (Burkina Faso). Thèse Doct Université de MontpellierGoogle Scholar
  22. Sicard B, Fuminier F (1992) Etude des variations saisonnières du métabolisme hydrique en relation avec le comportement locomoteur, le phénomène d'estivation et la reproduction chez un rongeur sahélien, Taterillus petteri. CR Acad Sci [III] (in press)Google Scholar
  23. Sicard B, Tranier M, Gautun JC (1988) Un rongeur nouveau de Burkina Faso (ex. Haute Volta): Taterillus petteri, sp. nov. (Rodentia Gerbillidae). Mammalia 52:187–198Google Scholar
  24. Uhl GR, Zingg HH, Habener JF (1985) Vasopressin mRNA in situ hybridization: localization and regulation studied with oligonucleotide cDNA probes in normal and Brattelboro rats hypothalamus. Proc Natl Acad Sci USA 82:5555–5559Google Scholar
  25. Zerbe RL, Palkovits M (1984) Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin. Neuroendocrinology 38:285–289Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Frédéric Fuminier
    • 1
    • 2
  • Bruno Sicard
    • 1
    • 2
  • Line Boissin-Agasse
    • 2
  • Jean Boissin
    • 2
  1. 1.Centre ORSTOMOuagadougouBurkina Faso
  2. 2.Laboratoire de Neurobiologie endocrinologique, URA 1197 CNRSUniversité de Montpellier-2Montpellier Cedex 5France

Personalised recommendations