Advertisement

Oecologia

, Volume 82, Issue 1, pp 128–136 | Cite as

The soil fauna of a beech forest on limestone: trophic structure and energy budget

  • Matthias Schaefer
Original Papers

Summary

The soil fauna of a mull beech forest on lime-stone in southern Lower Saxony (West Germany) was sampled quantitatively. Biomass estimates, trophic characteristics, and measurement and calculation of the energetic parameters of the constituent animal populations were used to construct an energy budget of the total heterotrophic subsystem of the forest. Mean annual zoomass amounted to about 15 g d wt m−2; earthworms (about 10 g d wt m−2) and other groups of the macrofauna were dominant. Protozoa constituted about 1.5 g d wt m−2. Relative distribution of zoomass among the trophic categories was 50% macrosaprophages, 30% microsaprophages, 12% microphytophages, and 4% zoophages. Total annual consumption rate of the saprophagous and microphytophagous soil fauna (6328 and 4096 kJ m−2 yr−1, respectively) was of the same order of magnitude as annual litter fall (canopy leaves 6124 kJ m−2 yr−1, flowers and fruits 944 kJ m−2 yr−1, herbs 1839 kJ m−2 yr−1, fine woody material 870 kJ m−2 yr−1, tree roots 3404 kJ m−2 yr−1, without coarse woody litter). Primary decomposers (macrosaprophages) were the key group for litter comminution and translocation onto and into the soil, thus contributing to the high decomposition rate (k=0.8) for leaf litter. Consumption rates of the other trophic groups were (values as kJ m−2 yr−1): bacteriophages 2954, micromycophages 416, zoophages 153. Grazing pressure of macrophytophages (including rhizophages) was low. Faeces input from the canopy layer was not significant. Grazing pressure on soil microflora almost equalled microbial biomass; hence, a large fraction of microbial production is channelled into the animal component. Predator pressure on soil animals is high, as a comparison between consumption rates by zoophages and production by potential prey — mainly microsaprophages, microphytophages and zoophages — demonstrated. Soil animals contributed only about 11% to heterotrophic respiration. However, there is evidence that animals are important driving variables for matter and energy transfer: key processes are the transformation of dead organic material and grazing on the microflora. It is hypothesized that the soil macrosaprophages are donor-limited.

Key words

Soil fauna Beech forest Mull soil Trophic structure Energy budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M (1977) An introduction to soil microbiology. 2nd ed. Wiley, New York, Santa BarbaraGoogle Scholar
  2. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials, Blackwell, Oxford LondonGoogle Scholar
  3. Anderson JM (1987) Interactions between invertebrates and microorganisms: noise or necessity for soil processes? In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, Cambridge, pp 125–145Google Scholar
  4. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 17: 197–203Google Scholar
  5. Andres E (1984) Kohlenstoff-Umsatz und-Bilanz des Bodens eines Buchenwald-Ökosystems auf Kalkgestein. Gött bodenkundl Ber 80: 1–174Google Scholar
  6. Axelsson B, Lohm U, Persson P (1984) Enchytraeids, lumbricids and soil arthropods in a northern deciduous woodland — a quantitative study. Holarct Ecol 7: 91–103Google Scholar
  7. Büttner V (1988) Untersuchungen zur Ökologie der Nematoden eines Kalkbuchenwaldes. Thesis, GöttingenGoogle Scholar
  8. Corsmann M (1981) Untersuchungen zur Ökologie der Schnecken (Gastropoda) cines Kalkbuchenwaldes: Populationsdichte, Phänologie und kleinräumige Verteilung. Drosera 81: 75–92Google Scholar
  9. Crawley MJ (1983) Herbivory: the dynamics of animal-plant interactions. Blackwell, Oxford LondonGoogle Scholar
  10. DeAngelis DL, Gardner RH, Shugart HH (1981) Productivity of forest ecosystems studied during IBP: the woodland data set. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 567–672Google Scholar
  11. Dierschke H (1989) Kleinräumige Vegetationsstruktur und phänologischer Rhythmus eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)Google Scholar
  12. Dierschke H, Song Y (1982) Vegetationsgliederung und kleinräumige Horizontalstruktur eines submontanen Kalkbuchenwaldes. In: Dierschke H (ed) Struktur und Dynamik von Wäldern. Berichte der internationalen Symposien der Internationalen Vereinigung für Vegetationskunde, Rinteln 1981. Cramer, Vaduz, pp 513–539Google Scholar
  13. Edwards NT, Shugart HH, McLaughlin SB, Harris WF, Reichle DE (1981) Carbon metabolism in terrestrial ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 499–536Google Scholar
  14. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung. Ergebnisse des Sollingprojekts 1966–1986. Ulmer, StuttgartGoogle Scholar
  15. Foissner W (1987) Soil Protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to literature. Progr Protist 2: 69–212Google Scholar
  16. Funke W (1971) Food and energy turnover of leaf-eating insects and their influence on primary production. Ecol Studies 2: 81–93Google Scholar
  17. Grimm R, Funke W (1986) Energieflüsse durch die Populationen der Tiere. In: Ellenberg H, Mayer R, Schauermann J (eds) Ökosystemforschung. Ergebnisse des Sollingprojekts 1966–1986, Ulmer, Stuttgart, pp 337–355Google Scholar
  18. Heal OW, MacLean SF (1975) Comparative productivity in ecosystems — secondary productivity. In: van Dobben WH, Lowe-McConnell RH (eds) Unifying concepts in ecology. Junk, Pudoc, The Hague, Wageningen, pp 89–108Google Scholar
  19. Hövemeyer K (1984) Die Dipterengemeinschaft eines Buchenwaldes auf Kalkgestein: Produktion and Imagines. Abundanz und räumliche Verteilung insbesondere der Larven. Pedobiologia 26: 1–15Google Scholar
  20. Hövemeyer K (1985) Die Zweiflügler eines Kalkbuchenwaldes: Lebenszyklen, Raum-Zeit-Muster und Nahrungsbiologie. Thesis, GöttingenGoogle Scholar
  21. Humphreys WF (1979) Production and respiration in animal populations. J Anim Ecol 48: 427–453Google Scholar
  22. Jörgensen RG (1987) Flüsse, Umsatz und Haushalt der postmortalen organischen Substanz und ihrer Stoffgruppen in Streudecke und Bodenkörper eines Buchenwald-Ökosystems auf Kalkgestein. Gött bodenkundl Bér 91: 1–409Google Scholar
  23. Judas M (1989a) Populationsökologie der Regenwürmer (Lumbricidae) in einem Kalkbuchenwald: Abundanzdynamik und Bedeutung von Nahrungsressourcen. Thesis, GöttingenGoogle Scholar
  24. Judas M (1989b) Predator-pressure on earthworms in a beechwood: field experiments and a review of potential impact. Pedobiologia 33: 339–354Google Scholar
  25. Judas M, Poser K, Joger HG, Schaefer M (1989) Langfristige Populationsdynamik der Regenwürmer (Lumbricidae) eines Kalkbuchenwaldes. Verh Ges Ökol (in press)Google Scholar
  26. Kjoller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39: 389–422Google Scholar
  27. Larcher W (1984) Ökologie der Pflanzen. 4th ed. Ulmer, StuttgartGoogle Scholar
  28. Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia 12: 434–463Google Scholar
  29. Luxton M (1979) Food and energy processing by oribatid mites. Rev Ecol Biol Sol 16: 103–111Google Scholar
  30. Martius C (1986) Die Laufkäferfauna (Coleoptera: Carabidae) eines Kalkbuchenwaldes. Drosera '86: 1–11Google Scholar
  31. McBrayer JF (1977) Contributions of cryptozoa to forest nutrient cycles. In: Mattson WJ (ed) The role of arthropods in forest ecosystems. Springer, New York Heidelberg, pp 70–77Google Scholar
  32. McNeill S, Lawton JH (1970) Annual production and respiration in animal populations. Nature 225: 472–474Google Scholar
  33. Meistefeld R (1989) Die Bedeutung der Protozoen im Kohlenstoffhaushalt eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)Google Scholar
  34. Meiwes KJ, Beese F (1988) Ergebnisse der Untersuchung des Stoffhaushaltes eines Buchenwaldökosystems auf Kalkgestein. Ber Forschungszentrum Waldökosysteme B 9: 1–141Google Scholar
  35. Mellin A (1988) Untersuchungen zur Autökologie und Funktion von Enchytraeiden, Tubificiden und Aeolosomatiden (Annelida, Oligochaeta) im Ökosystem Kalkbuchenwald. Thesis, GöttingenGoogle Scholar
  36. Odum EP (1971) Fundamentals of ecology. 3rd ed. Saunders, PhiladelphiaGoogle Scholar
  37. O'Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  38. O'Neill RV, Reichle DE (1979) Dimensions of ecosystem theory. In: Waring RH (ed) Forests: Fresh perspectives from ecosystem analysis. Oregon State University Press, Corvallis, pp 11–25Google Scholar
  39. Pellinen P (1986) Biomasseuntersuchung im Kalkbuchenwald. Thesis, GöttingenGoogle Scholar
  40. Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström BE, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. In: Persson T (ed) Structure and function of northern coniferous forests. Ecological Bulletins 32, Stockholm, pp 419–459Google Scholar
  41. Persson T, Lohm U (1977) Energetical significance of the annelids and arthropods in a Swedish grassland soil. Ecological Bulletins 23, StockholmGoogle Scholar
  42. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39: 287–388Google Scholar
  43. Petrusewicz K, MacFadyen A (1970) Productivity of terrestrial animals. Principles and methods. IBP Handbook 13, Blackwell, Oxford EdinburghGoogle Scholar
  44. Poser T (1988) Chilopoden als Prädatoren in einem Laubwald. Pedobiologia 31: 261–281Google Scholar
  45. Reichle DE (1977) The role of soil invertebrates in nutrient cycling. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecological Bulletins 25. NFR, Stockholm, pp 145–156Google Scholar
  46. Sayer M (1989) Zur Nahrungsbiologie der Kleinsäuger im Kalkbuchenwald. Verh Ges Ökol 17 (in press)Google Scholar
  47. Schaefer M (1983) Kurzflügler (Coleoptera: Staphylinidae) als Teil des Ökosystems “Kalkbuchenwald”. Verh Ges Ökol 11: 361–372Google Scholar
  48. Schaefer M (1989a) Die Bodentiere eines Kalkbuchenwaldes: ein Ökosystemforschungsprojekt. Verh Ges Ökol 17 (in press)Google Scholar
  49. Schaefer M (1989b) The animal community: diversity and resources. In: Röhrig E, Ulrich B (eds) Temperature deciduous forests (Ecosystems of the world). Elsevier, Amsterdam (in press)Google Scholar
  50. Schaefer M (1989c) Animals in European temperate deciduous forests. In: Röhrig E, Ulrich B (eds) Temperate deciduous forests (Ecosystems of the world) Elsevier, Amsterdam (in press)Google Scholar
  51. Schaefer M (1989d) Ecosystem processes: secondary production and decomposition. In: Röhrig E, Ulrich B (eds) Temperature deciduous forests (Ecosystems of the world). Elsevier, Amsterdam (in press)Google Scholar
  52. Schaefer M, Schauermann J (1989) The soil fauna of beech forests: comparison between a mull and a moder soil. Manuscript submittedGoogle Scholar
  53. Scheu S (1987a) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia 72: 197–201Google Scholar
  54. Scheu S (1987b) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Oecologia 72: 230–234Google Scholar
  55. Schmidt W, Eggert A, Hartmann T, Kothe G, Schultz R (1989) Jahresrhythmus und Produktion der Krautschicht in einem Kalkbuchenwald. Verh Ges Ökol 17 (in press)Google Scholar
  56. Slansky F, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York ChichesterGoogle Scholar
  57. Sprengel T (1986) Die Doppelfüßer (Diplopoda) eines Kalkbuchenwaldes und ihre Funktion beim Abbau der Laubstreu. Thesis, GöttingenGoogle Scholar
  58. Stippich G (1986) Die Spinnenfauna (Arachnida: Araneida) eines Kalkbuchenwaldes: Bedeutung von Habitatstruktur und Nahrung. Thesis GöttingenGoogle Scholar
  59. Strüve-Krusenberg R (1987) Die Asseln eines Kalkbuchenwaldes: Populationsökologie und Nahrungsbiologie. Thesis, GöttingenGoogle Scholar
  60. Strüve-Kusenberg R (1989) Zur Nahrungsbiologie der Asseln (Isopoda) eines Kalkbuchenwaldes. Verh Ges Ökol 17 (in press)Google Scholar
  61. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in Biology 5. Blackwell, Oxford LondonGoogle Scholar
  62. Ulrich W (1987) Wirtsbeziehungen der parasitoiden Hautflügler in einem Kalkbuchenwald (Hymenoptera). Zool Jahrb Abt Syst Oekol Geogr Tiere 114: 303–342Google Scholar
  63. Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15: 303–377Google Scholar
  64. Wagner B, Schaefer M (1989) Rüsselkäfer und Blattkäfer (Coleoptera: Curculionidae, Chrysomelidae) als Phytophage in einem Kalkbuchenwald Verh Ges Ökol (in press)Google Scholar
  65. Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, London New York San FranciscoGoogle Scholar
  66. Wiegert RG, Petersen CE (1983) Energy transfer in insects. Annu Rev Entomol 28: 455–486Google Scholar
  67. Wieser W (1986) Bioenergetik. Energietransformationen bei Organismen. Thieme, Stuttgart New YorkGoogle Scholar
  68. Winter K (1985) Über die Rolle phytophager Insekten in Buchenwäldern. Forst- Holzwirt 40: 93–99Google Scholar
  69. Wolters V (1983) Ökologische Untersuchungen an Collembolen eines Buchenwaldes auf Kalk. Pedobiologia 25: 73–85Google Scholar
  70. Wolters V (1985) Untersuchungen zur Habitatbindung und Nahrungsbiologie der Springschwänze (Collembola) eines Laubwaldes unter besonderer Berücksichtigung ihrer Funktion in der Zersetzerkette. Thesis, GöttingenGoogle Scholar
  71. Wolters V (1988) Effects of Mesenchytraeus glandulosus (Oligochaeta, Enchytraeidae) on decomposition processes. Pedobiologia 32: 387–398Google Scholar
  72. Wolters V (1989) The influence of omnivorous elaterid larvae on the microbial carbon cycle in different forest soils. Oecologia 80: 405–413Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Matthias Schaefer
    • 1
  1. 1.II. Zoologisches Institut, Abteilung ÖkologieUniversität GöttingenGöttingenGermany

Personalised recommendations