Advertisement

Cell and Tissue Research

, Volume 266, Issue 2, pp 391–398 | Cite as

Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster

  • Inken Pollack
  • Alois Hofbauer
Article

Summary

In this study, immunohistochemistry on cryostat sections is used to demonstrate anti-histamine immunoreactivity in the Drosophila brain. The results support earlier findings that histamine is probably a transmitter of insect photoreceptors. It is further shown that, in Drosophila, all imaginal photoreceptors including receptor type R7 are anti-histamine immunoreactive, whereas the larval photoreceptors do not seem to contain histamine. In addition to the photoreceptors, fibres in the antennal nerve and approximately 12 neurons in each brain hemisphere show strong histamine-like immunoreactivity. These cells arborize extensively in large parts of the central brain.

Key words

Photoreceptor cells Nervous system central Visual system Histamine Transmitter Immunohistochemistry Drosophila melanogaster (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolwig N (1945/46) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Medd Dan Naturhist Foren Khobenhavn 109:81–217Google Scholar
  2. Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62Google Scholar
  3. Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizemann CW, Hemm S, Hofbauer A, Oertel WH (1988) Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster. I. Wildtype visual system. Cell Tissue Res 253:357–370Google Scholar
  4. Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362Google Scholar
  5. Campos-Ortega JA, Jürgens G, Hofbauer A (1979) Cell clones and pattern formation: studies on sevenless, a mutant of Drosophila melanogaster Roux Arch 186:27–50Google Scholar
  6. Datum KH, Weiler R, Zettler F (1986) Immunocytochemical demonstration of gamma-aminobutyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J Comp Physiol [A] 159:241–249Google Scholar
  7. Elias MS, Evans PD (1983) Histamine in the insect nervoussystem: distribution, synthesis and metabolism. J Neurochem 41:562–568Google Scholar
  8. Elias MS, Evans PD (1984) Autoradiographic localization of 3H-histamine accumulation by the visual system of the locust. Cell Tissue Res 238:105–112Google Scholar
  9. Fischbach K-F, Dittrich A (1989) The optic lobe of Drosophila melanogaster. Part I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475Google Scholar
  10. Fortini ME, Rubin GM (1990) Analysis of cis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promotors in Drosophila melanogaster. Genes Dev 4:444–463Google Scholar
  11. Griffiths GW, Boschek CB (1976) Rapid degeneration of visual fibres following retinal lesions in the dipteran compound eye. Neurosci Lett 3:253–258Google Scholar
  12. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol [A] 154:157–165Google Scholar
  13. Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol [A] 161:201–213Google Scholar
  14. Hardie RC (1988) Effects of antagonists on putative histamine receptors in the first visual neuropile of the housefly (Musca domestica). J Exp Biol 138:221–241Google Scholar
  15. Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706Google Scholar
  16. Hofbauer A, Buchner E (1989) Does Drosophila have seven eyes? Naturwissenschaften 76:335–336Google Scholar
  17. Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta. J Comp Neurol 307:647–657Google Scholar
  18. Joseph DR, Sullivan PM, Wang Y-M, Kozak C, Fenstermacher DA, Behrendsen ME, Zahnow CA (1990) Characterization and expression of the complementary DNA encoding rat histidine decarboxylase. Proc Natl Acad Sci USA 87:733–737Google Scholar
  19. Nässel DR, Holmquist MH, Hardie RC, Hakanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646Google Scholar
  20. Nässel DR, Pirvola U, Panula P (1990) Histamine-like immunoreactive neurons innervating putative neurohaemal areas and central neuropile in the thoraco-abdominal ganglia of the flies Drosophila and Calliphora. J Comp Neurol 197:525–536Google Scholar
  21. Pirvola U, Tuomisto L, Yamatodani A, Panula P (1988) Distribution of histamine in the cockroach brain and visual system: an immunocytochemical and biochemical study. J Comp Neurol 276:514–526Google Scholar
  22. Power ME (1943) The brain of Drosophila melanogaster. J Morphol 72:517–559Google Scholar
  23. Sarthy PV (1989) Histamine: a neurotransmitter candidate for photoreceptors in Drosophila melanogaster. Invest Ophthalmol Visual Sci 30 S:290Google Scholar
  24. Schlemermayer E, Schütte M, Ammermüller J (1989) Immunocytochemical and electrophysiological evidence that locust ocellar photoreceptors contain and release histamine. Neurosci Lett 99:73–78Google Scholar
  25. Simmons PJ, Hardie RC (1988) Evidence that histamine is a neurotransmitter of photoreceptors in the locust ocellus. J Exp Biol 138:205–219Google Scholar
  26. Steller H, Fischbach K-F, Rubin GM (1987) Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50:1139–1153Google Scholar
  27. Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeotically transformed antennae in Drosophila. Dev Biol 82:224–237Google Scholar
  28. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Strausfeld HJ, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242:163–178Google Scholar
  30. Tomlinson A, Ready D (1986) Sevenless: a cell specific homeotic mutation of the Drosophila eye. Science 231:400–402Google Scholar
  31. Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125Google Scholar
  32. Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139:177–191Google Scholar
  33. Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38Google Scholar
  34. Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/R8 in various regions of blowfly eye. Tissue Cell 14:341–358Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Inken Pollack
    • 1
  • Alois Hofbauer
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der UniversitätWürzburgFederal Republic of Germany

Personalised recommendations