Cell and Tissue Research

, Volume 266, Issue 2, pp 285–293 | Cite as

The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral-line afferents from the rostrum of the upper jaw

  • Mario F. Wullimann
  • Michael H. Hofmann
  • Dietrich L. Meyer


In the spiny eel, Macrognathus aculeatus, anterodorsal and (to a lesser degree) anteroventral lateralline nerves project massively to the granular layer of the valvula cerebelli, throughout its rostrocaudal extent. The posterior lateral-line nerve terminates in the corpus cerebelli. Thus, valvula and corpus cerebelli are supplied with mechanosensory input of different peripheral origins. An analysis of the taxonomic distribution of experimentally determined primary lateral-line input to the three parts of the teleostean cerebellum reveals that the eminentia granularis always receives such input, and that the corpus cerebelli is the recipient of primary lateral-line input in many teleosts. The valvula, however, receives primary lateral-line afferents in only two examined species. In M. aculeatus, the massive lateral-line input to the valvula probably originates in mechanoreceptors located in the elongated rostrum of the upper jaw, a characteristic feature of mastacembeloid fishes. This projection to the valvula may therefore represent a unique specialization that arose with the evolution of the peculiar rostrum.

Key words

Cerebellum Valvula Lateral-line system Mechanoreception Macrognathus aculeatus (Teleostei) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison WHF (1923) A comparison of the cerebellar tracts in three teleosts. J Comp Neurol 36:1–35Google Scholar
  2. Barry MA (1987) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J Comp Neurol 266:457–477Google Scholar
  3. Bartheld CS von, Meyer DL (1985) Trigeminal and facial innervation of cirri in three teleost species. Cell Tissue Res 241:615–622Google Scholar
  4. Bass AH (1982) Evolution of the vestibulolateral lobe of the cerebellum in electroreceptive and nonelectroreceptive teleosts. J Morphol 174:335–348Google Scholar
  5. Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414Google Scholar
  6. Bell CC, Russell CJ (1978) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol 182:367–382Google Scholar
  7. Berkelbach van der Sprenkel H (1915) The central relations of the cranial nerves in Silurus glanis and Mormyrus caschive. J Comp Neurol 25:5–63Google Scholar
  8. Blübaum-Gronau E, Münz H (1987) Topological representation of primary afferents in various segments of the lateral line system in the butterflyfish, Pantodon buchholzi. Verh Dt Zool Ges 80:268–269Google Scholar
  9. Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211:139–153Google Scholar
  10. Claas B, Münz H (1981) Projection of lateral line afferents in a teleost's brain. Neurosci Lett 23:287–290Google Scholar
  11. De Rosa F, Fine ML (1988) Primary connections of the anterior and posterior lateral line nerves in the oyster toadfish. Brain Behav Evol 31:312–317Google Scholar
  12. Diaz SM, Anadon R (1989) Central projections of the lateral line nerves of Chelon labrosus (teleosts, Order Perciformes) J Hirnforsch 30:339–347Google Scholar
  13. Ebbesson SOE, Hansel M, Scheich H (1981) An ‘on the slide’ modification of the DeOlmos-Heimer HRP method. Neurosci Lett 22:1–14Google Scholar
  14. Finger TE, Tong SL (1984) Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151Google Scholar
  15. Herrick CJ (1924) Origin and evolution of the cerebellum. Arch Neurol Psychiat 11:621–652Google Scholar
  16. Koester DM (1983) Central projectons of the octavolateralis nerves of the clearnose skate, Raja eglanteria. J Comp Neurol 221:199–215Google Scholar
  17. Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, MinneapolisGoogle Scholar
  18. Luiten PGM (1975) The central projections of the trigeminal, facial and anterior lateral line nerves in the carp (Cyprinus carpio L.). J Comp Neurol 160:399–417Google Scholar
  19. Maheshwari SC (1965) The cranial nerves of Mastacembelus armatus (Lacepede). Jpn J Ichthyol 12:89–98Google Scholar
  20. Maheshwari SC (1971) The cephalic sensory canals of Mastacembelus armatus Lecepede. J Zool Soc India 23:163–166Google Scholar
  21. Maler L, Karten HJ, Bennett MVL (1973a) The central connections of the posterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:57–66Google Scholar
  22. Maler L, Karten HJ, Bennett MVL (1973b) The central connections of the anterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:67–84Google Scholar
  23. Maler L, Finger T, Karten HJ (1974) Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish, Apteronotus (Sternarchus) albifrons. J Comp Neurol 158:363–382Google Scholar
  24. McCormick CA (1981) Central projections of the lateral line and eight nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15Google Scholar
  25. McCormick CA (1983) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 265:177–185Google Scholar
  26. Meredith GE (1984) Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): a nonelectroreceptive teleost. J Comp Neurol 228:342–358Google Scholar
  27. Meredith GE, Butler AB (1983) Organization of eighth nerve afferent projections from individual endorgans of the inner ear in the teleost, Astronotus ocellatus. J Comp Neurol 220:44–62Google Scholar
  28. Meredith GE, Roberts BL, Maslam S (1987) Distribution of afferent fibers in the brainstem from end organs in the ear and lateral line in the European eel. J Comp Neurol 265:507–520Google Scholar
  29. New JG, Northcutt RG (1984) Central projections of the lateral line nerves in the shovelnose sturgeon. J Comp Neurol 225:129–140Google Scholar
  30. Nieuwenhuys R (1967) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93Google Scholar
  31. Nieuwenhuys R (1982) An overview of the organization of the brain of actinoptergian fishes. Am Zool 22:287–310Google Scholar
  32. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) Mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 17–78Google Scholar
  33. Pearson AA (1936a) The acoustico-lateral nervous system in fishes. J Comp Neurol 64:235–273Google Scholar
  34. Pearson AA (1936b) The acoustico-lateral centers and the cerebellum, with fiber connections, of fishes. J Comp Neurol 65:201–294Google Scholar
  35. Pouwels E (1978) On the development of the cerebellum of the trout, Salmo gairdneri. Anat Embryol 152:291–308Google Scholar
  36. Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. J Morphol 198:131–147Google Scholar
  37. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131Google Scholar
  38. Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, MünchenGoogle Scholar
  39. Song J, Northcutt RG (1991) The primary projections of the lateral line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63Google Scholar
  40. Van der Horst CJ (1926) The cerebellum of fishes. 2. The cerebellum of Megalops cyprinoides (Brouss.) and its connections. Konj Akad Wet (Amsterdam) Proc Sect Sci 29:44–53Google Scholar
  41. Wallenberg A (1970) Beiträge zur Kenntnis des Gehirns der Teleostier und Selachier. Anat Anz 31:369–399Google Scholar
  42. Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53Google Scholar
  43. Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32:293–316Google Scholar
  44. Wullimann MF, Northcutt RG (1989) Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J Comp Neurol 289:554–567Google Scholar
  45. Zottoli SJ, Horne C van (1983) Posterior lateral line afferent and efferent pathways within the central nervous system of the goldfish with special reference to the Mauthner cell. J Comp Neurol 219:100–111Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Mario F. Wullimann
    • 1
  • Michael H. Hofmann
    • 1
  • Dietrich L. Meyer
    • 1
  1. 1.Zentrum AnatomieAbteilung für Neuroanatomie der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations