Advertisement

Cell and Tissue Research

, Volume 265, Issue 1, pp 175–184 | Cite as

The catecholaminergic system of an annelid (Ophryotrocha puerilis, Polychaeta)

  • A. Schlawny
  • T. Hamann
  • M. A. Müller
  • H.-D. Pfannenstiel
Article

Summary

The complex catecholaminergic (CA) nervous system of the polychaete Ophryotrocha puerilis is documented using glyoxylic acid induced fluorescence (GIF) and immunohistochemistry. CA-neurons are found both in the central and peripheral nervous system. In the brain, about 50 CA-neurons are present in the perikaryal layer together with numerous CA fibres. Two pairs of CA perikarya are characteristic for each ganglion of the ventral nerve cord. CA-neurites in the ventral nerve cord are mainly arranged in 4 strands paralleling the longitudinal axis of the worm. Fluorescent neurons with receptive ciliary structures are present in body appendages (antennae, palps, urites, parapodial cirri), in the body-wall, and within the oesophageal wall. Furthermore, a subepidermal nerve net of free CA nerve endings has been found. After incubation of specimens with dopamine prior to the development of GIF more fluorescent perikarya could be observed; the fluorescence was also intensified. Pre-incubation with reserpine reduced the intensity of GIF. Results of high pressure liquid chromatography and immunostaining with a polyclonal antibody against a dopamine-glutaraldehyde-complex suggest that dopamine is the major CA transmitter. It is thought that dopaminergic neurons together with ciliary receptive structures act as mechano- and/or chemoreceptors.

Key words

Nervous system Nervous system, peripheral Catecholamines Immunohistochemistry Glyoxylic acid fluorescence Ophryotrocha puerilis (Annelida) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark ME (1966) Histochemical localisation of monoamines in the nervous system of the polychaete Nephtys. Proc R Soc Lond (Biol) 165:308–325Google Scholar
  2. Coulon J, Bessone R (1979) Autoradiographic detection of indolamine and catecholamine neurons in the nervous system of Owenia fusiformis (Polychaeta, Annelida). Cell Tissue Res 198:95–104Google Scholar
  3. Dacey DM (1988) Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240:1196–1198Google Scholar
  4. Dahl E, Falck B, Mecklenburg C von, Myhrberg H (1963) Adrenergic sensory neurons in invertebrates (abstract). Gen Comp Endocrinol 3:693Google Scholar
  5. Dhainaut-Courtois N (1972) Etude en microscopie électronique et fluorescence des médiateurs chimiques du système nerveux des Nereidae (Annélides Polychètes) Z Zellforsch 126:90–113Google Scholar
  6. Dhainaut-Courtois N, Golding DW (1988) Nervous system. In: Westheide W, Hermans CO (eds) The ultrastructure of the Polychaeta. Microfauna Marina, vol 4. Fischer, Stuttgart, pp 89–110Google Scholar
  7. Dhainaut-Courtois N, Engelhardt R-P, Dhainaut A (1979a) Etude cytophysiologique des systèmes monoaminergiques et cholinergique des Nereis (Annélides Polychètes). I. Systeme nerveux périphérique et jonctions neuromusculaires. Arch Biol (Bruxelles) 90:225–244Google Scholar
  8. Dhainaut-Courtois N, Engelhardt R-P, Dhainaut A (1979b) Etude cytophysiologique des systèmes monoaminergiques et cholinergique des Nereis (Annélides, Polychètes). II. Système nerveux central. Arch Biol (Bruxelles) 90:273–288Google Scholar
  9. Dietzel ID, Gottmann K (1988) Development of dopamine-containing neurons and dopamine uptake in embryos of Hirudo medicinalis. Dev Biol 128:277–283Google Scholar
  10. Dorsett DA (1978) Organization of the nerve cord. In: Mill PJ (ed) Physiology of annelids. Academic Press, London, pp 115–160Google Scholar
  11. Ehinger B, Myhrberg HE (1971) Neuronal localisation of dopamine, noradrenaline, and 5-hydroxytryptamine in the central and peripheral nervous system of Lumbricus terrestris (L.). Histochemistry 28:265–275Google Scholar
  12. Elofsson R, Falck B, Lindvall O, Myhrberg H (1977) Evidence for new catecholamines of related amino acids in some invertebrate sensory neurons. Cell Tissue Res 182:525–536Google Scholar
  13. Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  14. Geffard M, Buijs RM, Seguela P, Pool CW, Moal M le (1984) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165Google Scholar
  15. Grothe C, Seidl K, Pfannenstiel HD (1987) Cytochemical and biochemical characterization of neurosecretory material in the brain of an annelid, Ophryotrocha puerilis (Polychaeta). Gen Comp Endocrinol 68:1–5Google Scholar
  16. Haffner K von (1959) Über den Bau und den Zusammenhang der wichtigsten Organe des Kopfendes von Hyalinoecia tubicula MALMGREN (Polychaeta, Eunicidae, Onuphidinae), mit Berücksichtigung der Gattung Eunice, Zool Jb Anat 77:133–192Google Scholar
  17. Lent CM (1982) Fluorescent properties of monoamine neurons following glyoxylic acid treatment of intact leech ganglia. Histochemistry 75:77–89Google Scholar
  18. Lindvall O, Björklund A (1974) The glyoxylic acid fluorescence histochemical method: a detailed account on the methodology for visualisation of central catecholamine neurons. Histochemistry 39:97–127Google Scholar
  19. Marsden JR, Coleman C, Richard R, Jost J, Cain H (1981) Uptake of tritium labelled biogenic amines by the prostomium of the polychaete Nereis virens (Sars) (Annelida). Tissue Cell 13:269–282Google Scholar
  20. Müller T, Unsicker K (1981) High performance liquid chromatography with electrochemical detection as a highly efficient tool for studying catecholaminergic systems. I. Quantification of noradrenaline, adrenaline, and dopamine in cultured adrenal medullary cells. J Neurosci Methods 4:39–53Google Scholar
  21. Myhrberg HE (1967) Monoaminergic mechanisms in the nervous system of Lumbricus terrestris (L.). Z Zellforsch 81:311–343Google Scholar
  22. Myhrberg HE (1971) Ultrastructural localisation of monoamines in the epidermis of Lumbricus terrestris (L.). Z Zellforsch 117:139–154Google Scholar
  23. Nakajima Y (1987) Localisation of catecholaminergic nerves in larval echinoderms. Zool Sci 4:293–299Google Scholar
  24. Pfannenstiel HD (1973) Zur sexuellen Differenzierung von Ophryotrocha puerilis (Polychaeta, Eunicidae). Mar Biol 20:245–258Google Scholar
  25. Pfannenstiel HD (1982) Modified axonemes and ciliary membranes in three polychaete species. Cell Tissue Res 224:181–188Google Scholar
  26. Pfannenstiel HD, Grothe C (1988) Neurosecretory elements. In: Westheide W, Hermans CO (eds) The ultrastructure of the Polychaeta. Microfauna Marina, vol 4. Fischer, Stuttgart, pp 111–120Google Scholar
  27. Pfannenstiel HD, Spiehl D (1987) Dopamine induces sex reversal in females of Ophryotrocha puerilis (Polychaeta). Cell Differ [Suppl] 20:84Google Scholar
  28. Pfannenstiel HD, Schlawny A, Hamann T, Müller M, Rhode B, Spiehl D (1990) Dopamine and male-female differentiation in a hermaphroditic polychaete. In: Epple A, Scanes CG, Stetson MD (eds) Progress in comparative endocrinology. Wiley-Liss, New York, pp 219–225Google Scholar
  29. Reisinger E (1936) Zur Exkretionsphysiologie von Ophryotrocha puerilis Claparède&Metschnikoff. Thalassia 2:2–24Google Scholar
  30. Schlawny A, Hamann T, Müller MA, Pfannenstiel H-D (1991) Cytophysiology of neurosectory axon terminals in the brain of an annelid (Ophryotrocha puerilis, Polychaeta). A re-evaluation. Cell Tissue Res 264:339–345Google Scholar
  31. Sternberger LA (1970) The unlabeled antibody method of immunocytochemistry. J Histochem Cytochem 18:315Google Scholar
  32. White D, Marsden JR (1978) Microspectrofluorimetric measurements on cells containing biogenic amines in the cerebral ganglion of the polychaete Nereis virens (Sars). Biol Bull 155:395–409Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Schlawny
    • 1
  • T. Hamann
    • 1
  • M. A. Müller
    • 1
  • H.-D. Pfannenstiel
    • 1
  1. 1.Institut für ZoologieFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations