Advertisement

Anatomy and Embryology

, Volume 162, Issue 1, pp 81–103 | Cite as

A quantitative approach to cytoarchitectonics

VII. The areal pattern of the cortex of the guinea pig
  • Andreas Wree
  • Karl Zilles
  • Axel Schleicher
Article

Summary

The cerebral cortex of the guinea pig has been examined by means of a quantitative cytoarchitectonic method (Schleicher et al. 1978; Zilles et al. 1978a). In this method, a computer-controlled automatic image analyzer determines the grey level index of microscopic fields measuring 50x50 μm in Nissl-stained sections by a systematic scanning procedure. Computer plots of serially sectioned histological slides from three hemispheres were produced by printing selected ranges of grey level indices. The delineation of cortical areas was worked out in these plots based on quantitative criteria. Cortical maps of the areal pattern were reconstructed graphically.

The resulting cortical map of the guinea pig differes from that of Rose (1912), but it corresponds to the results of Friede (1960) and is in agreement with neurophysiological studies. In general, the areal pattern of the guinea pig is similar to that of the rat (Zilles et al. 1980), but there are also some differences. These differences are discussed with respect to functional considerations.

Key words

Cytoarchitectonics Guinea pig Iso- and Allocortex Cortical mapping Automatic measuring method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellbaues. Barth LeipzigGoogle Scholar
  2. Campos GB, Welker WI (1976) Comparison between brains of a large and a small hystricomorph rodent: Capybara, Hydrochoerus and guinea pig, Cavia; neocortical projections and measurements of brain subdivisions. Brain Behav Evol 13:243–266Google Scholar
  3. Choudhury BP (1978) Retinotopic organization of the guinea pig's visual cortex. Brain Res 144:19–29Google Scholar
  4. Creel D, Giolli RA (1972) Retinogeniculostriate projection in guinea pigs: Albino and pigmented strains compared. Exp Neurol 36:411–425Google Scholar
  5. Donoghue IP, Kerman KL, Ebner FF (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J Comp Neurol 193:647–664Google Scholar
  6. Droogleever Fortuyn AB (1911) De cytoarchitectonie der groote hersenschors van eenige knaagdieren. Thesis, Amsterdam Scheltema en Holkema AmsterdamGoogle Scholar
  7. Felgenhauer K (1963) Die Lokalisation der spezifischen und unspezifischen Phosphatasen im Meerschweinchengehirn. Z Zellforsch 60:518–531Google Scholar
  8. Felgenhauer K, Stammler A (1962) Das Verteilungsmuster der Dehydrogenasen und Diaphorasen im Zentralnervensystem des Meerschweinchens. Z Zellforsch 58:219–233Google Scholar
  9. Fleischhauer K, Zilles K, Schleicher A (1980) A revised cytoarchitectonic map of the neocortex of the rabbit (Oryctolagus cuniculus). Anat Embryol 161:121–143Google Scholar
  10. Friede RL (1960) Histochemical investigations on succinic dehydrogenase in the central nervous system. IV. A histochemical mapping of the cerebral cortex of the guinea pig. J Neurochem 5:156–171Google Scholar
  11. Geneser-Jensen FA (1971a) Distribution of monoamine oxidase in the hippocampal region of the guinea pig. I. Entorhinal area, parasubiculum, and presubiculum. Z Zellforsch 117:46–64Google Scholar
  12. Geneser-Jensen FA (1971b) Distribution of monoamine oxidase in the hippocampal region of the guinea pig. II. Subiculum and hippocampus. Z Zellforsch 121:327–340Google Scholar
  13. Geneser-Jensen FA (1972a) Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig. II. Subiculum and hippocampus. Z Zellforsch 124:546–560Google Scholar
  14. Geneser-Jensen FA (1972b) Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig. III. The dentate area. Z Zellforsch 131:481–495Google Scholar
  15. Geneser-Jensen FA (1973) Distribution of monoamine oxidase in the hippocampal region of the guinea pig. III. The dentate area. Z Zellforsch 137:1–12Google Scholar
  16. Geneser-Jensen FA, Blackstad TW (1971) Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig. I. Entorhinal area, parasubiculum, and presubiculum. Z Zellforsch 114:460–481Google Scholar
  17. Geneser-Jensen FA, Haug FMS, Danscher G (1974) Distribution of heavy metals in the hippocampal region of the guinea pig. A light microscope study with Timm's sulfide silver method. Z Zellforsch 147:441–478Google Scholar
  18. Gerebtzoff MA (1940) Recherches sur l'écore cérébrale et le thalamus du cobaye. I. Étude architectonique. La Cellule 48:337–352Google Scholar
  19. Gerebtzoff MA, Wauters A (1941) Recherches sur l'écore cérébrale et le thalamus du cobaye. II. Systématisation cortico-thalamique et voies efférentes de l'écorce cérébrale. La Cellule 49:6–70Google Scholar
  20. Hall RD, Lindholm EP (1974) Organization of the motor and somatosensory neocortex in the albino rat. Brain Res 66:23–28Google Scholar
  21. Hellweg FC, Koch R, Vollrath M (1977) Representation of the cochlea in the neocortex of guinea pig. Exp Brain Res 29:467–474Google Scholar
  22. Johnson TN (1957) Studies on the brain of the guinea pig. I. The nuclear pattern of certain basal telencephalic centers. J Comp Neurol 107:353–377Google Scholar
  23. Jones EG, Porter R (1980) What is Area 3 a? Brain Res Rev 2:1–43Google Scholar
  24. Kayer D, Legouix JP (1963) Projections tonotopique sur le cortex auditif du cobaye. Compt Rend Soc Biol (Paris) 157:2161–2164Google Scholar
  25. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192Google Scholar
  26. Lende RA, Woolsey CN (1956) Sensory and motor localization in cerebral cortex of porcupine (Erethizon dorsatum). J Neurophysiol 19:544–563Google Scholar
  27. Levinson DM, Riffle DW, Reeves DL, Sheridan CL (1977) Enhancement of discrimination learning following unilateral lesion of posterior neocortex in guinea pigs. Physiol Behav 19:513–517Google Scholar
  28. Lohmann AHM (1963) The anterior olfactory lobe of the guinea pig. Acta Anat 53 Suppl 49:1–109Google Scholar
  29. Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296Google Scholar
  30. Pilleri G (1959) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. Acta Anat 39 Suppl 38:43–95Google Scholar
  31. Pilleri G (1960) Comparative anatomical investigations on the central nervous system of rodents, and relationships between brain from and taxonomy. Rev Suise Zool 67:373–386Google Scholar
  32. Romeis B (1968) Mikroskopische Technik. Oldenbourg MünchenGoogle Scholar
  33. Rose M (1912) Histologische Lokalisation der Großhirnrinde bei kleinen Säugetieren (Rodentia, Insektivora, Chiroptera). J Psychol Neurol 19:391–479Google Scholar
  34. Schleicher A, Zilles K, Kretschmann HJ (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Anat Anz (Erg-H) 144:413–415Google Scholar
  35. Shipley MT, Geneser-Jensen FA, Meier A (1974) Correlated histochemical and experimental evidence for a subdivision of the entorhinal area of the guinea pig. Cell Tissue Res 150:455–462Google Scholar
  36. Sørensen KE (1980) Ipsilateral projection from subiculum to the retrospleneal cortex in the guinea pig. J Comp Neurol 193:893–911Google Scholar
  37. Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen. 4 Bd, Teil 9, Nervensystem. Springer Berlin-Heidelberg-New YorkGoogle Scholar
  38. Woolsey TA, Welker C, Schwartz RH (1976) Comparative anatomical studies of the Sm I face cortex with speical reference to the occurence of “barrels” in layer IV. J Comp Neurol 164:79–94Google Scholar
  39. Zeigler HP (1964) Cortical sensory and motor areas of the guinea pig (“Cavia parcellus”). Arch Ital Biol 102:587–598Google Scholar
  40. Zilles K, Schleicher A, Kretschmann HJ (1978a) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of Tupaia belangeri. Anat. Embryol 153:195–212Google Scholar
  41. Zilles K, Schleicher A, Kretschmann HJ (1978b) A quantitative approach to cytoarchitectonics. II. The allocortex of Tupaia belangeri. Anat Embryol 154:335–352Google Scholar
  42. Zilles K, Schleicher A, Kretschmann HJ (1978c) Quantitative Darstellung cytoarchitektonischer Areale im Cortex von Tupaia belangeri und SPF-Katze. Anat Anz (Erg-H) 144:409–411Google Scholar
  43. Zilles K, Schleicher A, Kretschmann HJ (1978d) Automatische Messung des Grauwertindex zur Charakterisierung zytoarchitektonischer Areale im Allo-und Neocortex. Zbl Allg Path 122:593Google Scholar
  44. Zilles K, Rehkämper G, Stephan H, Schleicher A (1979a) A quantitative approach to cytoarchitectonics. IV. The areal pattern of the cortex of Galago demidovii (E. Geoffroy, 1796), (Lorisidae, Primates). Anat Embryol 157:81–103Google Scholar
  45. Zilles K, Rehkämper G, Schleicher A (1976b) A quantitative approach to cytoarchitectonics. V. The areal pattern of the cortex of Microcebus murinus (E. Geoffroy, 1828), (Lemuridae, Primates). Anat Embryl 157:269–289Google Scholar
  46. Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159:335–360Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1981

Authors and Affiliations

  • Andreas Wree
    • 1
  • Karl Zilles
    • 1
  • Axel Schleicher
    • 1
  1. 1.Anatomisches Institut der Universität KielBundesrepublik Deutschland

Personalised recommendations